Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemsima Structured version   Unicode version

Theorem ballotlemsima 28651
Description: The image by  S of an interval before the first pick. (Contributed by Thierry Arnoux, 5-May-2017.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotth.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
ballotth.e  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
ballotth.mgtn  |-  N  < 
M
ballotth.i  |-  I  =  ( c  e.  ( O  \  E ) 
|->  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  c
) `  k )  =  0 } ,  RR ,  `'  <  ) )
ballotth.s  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
Assertion
Ref Expression
ballotlemsima  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) "
( 1 ... J
) )  =  ( ( ( S `  C ) `  J
) ... ( I `  C ) ) )
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O    k, M    k, N    k, O    i, c, F, k    C, i, k    i, E, k    C, k    k, I, c    E, c    i, I, c    k, J    S, k
Allowed substitution hints:    C( x, c)    P( x, i, k, c)    S( x, i, c)    E( x)    F( x)    I( x)    J( x, i, c)    M( x)    N( x)    O( x)

Proof of Theorem ballotlemsima
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 imassrn 5358 . . . . . 6  |-  ( ( S `  C )
" ( 1 ... J ) )  C_  ran  ( S `  C
)
2 ballotth.m . . . . . . . . 9  |-  M  e.  NN
3 ballotth.n . . . . . . . . 9  |-  N  e.  NN
4 ballotth.o . . . . . . . . 9  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
5 ballotth.p . . . . . . . . 9  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
6 ballotth.f . . . . . . . . 9  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
7 ballotth.e . . . . . . . . 9  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
8 ballotth.mgtn . . . . . . . . 9  |-  N  < 
M
9 ballotth.i . . . . . . . . 9  |-  I  =  ( c  e.  ( O  \  E ) 
|->  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  c
) `  k )  =  0 } ,  RR ,  `'  <  ) )
10 ballotth.s . . . . . . . . 9  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
112, 3, 4, 5, 6, 7, 8, 9, 10ballotlemsf1o 28649 . . . . . . . 8  |-  ( C  e.  ( O  \  E )  ->  (
( S `  C
) : ( 1 ... ( M  +  N ) ) -1-1-onto-> ( 1 ... ( M  +  N ) )  /\  `' ( S `  C )  =  ( S `  C ) ) )
1211simpld 459 . . . . . . 7  |-  ( C  e.  ( O  \  E )  ->  ( S `  C ) : ( 1 ... ( M  +  N
) ) -1-1-onto-> ( 1 ... ( M  +  N )
) )
13 f1of 5822 . . . . . . 7  |-  ( ( S `  C ) : ( 1 ... ( M  +  N
) ) -1-1-onto-> ( 1 ... ( M  +  N )
)  ->  ( S `  C ) : ( 1 ... ( M  +  N ) ) --> ( 1 ... ( M  +  N )
) )
14 frn 5743 . . . . . . 7  |-  ( ( S `  C ) : ( 1 ... ( M  +  N
) ) --> ( 1 ... ( M  +  N ) )  ->  ran  ( S `  C
)  C_  ( 1 ... ( M  +  N ) ) )
1512, 13, 143syl 20 . . . . . 6  |-  ( C  e.  ( O  \  E )  ->  ran  ( S `  C ) 
C_  ( 1 ... ( M  +  N
) ) )
161, 15syl5ss 3510 . . . . 5  |-  ( C  e.  ( O  \  E )  ->  (
( S `  C
) " ( 1 ... J ) ) 
C_  ( 1 ... ( M  +  N
) ) )
17 fzssuz 11750 . . . . . 6  |-  ( 1 ... ( M  +  N ) )  C_  ( ZZ>= `  1 )
18 uzssz 11125 . . . . . 6  |-  ( ZZ>= ` 
1 )  C_  ZZ
1917, 18sstri 3508 . . . . 5  |-  ( 1 ... ( M  +  N ) )  C_  ZZ
2016, 19syl6ss 3511 . . . 4  |-  ( C  e.  ( O  \  E )  ->  (
( S `  C
) " ( 1 ... J ) ) 
C_  ZZ )
2120adantr 465 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) "
( 1 ... J
) )  C_  ZZ )
2221sselda 3499 . 2  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ( ( S `  C ) " (
1 ... J ) ) )  ->  k  e.  ZZ )
23 elfzelz 11713 . . 3  |-  ( k  e.  ( ( ( S `  C ) `
 J ) ... ( I `  C
) )  ->  k  e.  ZZ )
2423adantl 466 . 2  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ( ( ( S `
 C ) `  J ) ... (
I `  C )
) )  ->  k  e.  ZZ )
25 f1ofn 5823 . . . . . . 7  |-  ( ( S `  C ) : ( 1 ... ( M  +  N
) ) -1-1-onto-> ( 1 ... ( M  +  N )
)  ->  ( S `  C )  Fn  (
1 ... ( M  +  N ) ) )
2612, 25syl 16 . . . . . 6  |-  ( C  e.  ( O  \  E )  ->  ( S `  C )  Fn  ( 1 ... ( M  +  N )
) )
2726adantr 465 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( S `  C )  Fn  (
1 ... ( M  +  N ) ) )
282, 3, 4, 5, 6, 7, 8, 9ballotlemiex 28637 . . . . . . . . . 10  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  e.  ( 1 ... ( M  +  N ) )  /\  ( ( F `  C ) `  (
I `  C )
)  =  0 ) )
2928simpld 459 . . . . . . . . 9  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  e.  ( 1 ... ( M  +  N )
) )
3029adantr 465 . . . . . . . 8  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( I `  C )  e.  ( 1 ... ( M  +  N ) ) )
31 elfzuz3 11710 . . . . . . . 8  |-  ( ( I `  C )  e.  ( 1 ... ( M  +  N
) )  ->  ( M  +  N )  e.  ( ZZ>= `  ( I `  C ) ) )
3230, 31syl 16 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( M  +  N )  e.  (
ZZ>= `  ( I `  C ) ) )
33 elfzuz3 11710 . . . . . . . 8  |-  ( J  e.  ( 1 ... ( I `  C
) )  ->  (
I `  C )  e.  ( ZZ>= `  J )
)
3433adantl 466 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( I `  C )  e.  (
ZZ>= `  J ) )
35 uztrn 11122 . . . . . . 7  |-  ( ( ( M  +  N
)  e.  ( ZZ>= `  ( I `  C
) )  /\  (
I `  C )  e.  ( ZZ>= `  J )
)  ->  ( M  +  N )  e.  (
ZZ>= `  J ) )
3632, 34, 35syl2anc 661 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( M  +  N )  e.  (
ZZ>= `  J ) )
37 fzss2 11749 . . . . . 6  |-  ( ( M  +  N )  e.  ( ZZ>= `  J
)  ->  ( 1 ... J )  C_  ( 1 ... ( M  +  N )
) )
3836, 37syl 16 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( 1 ... J )  C_  (
1 ... ( M  +  N ) ) )
39 fvelimab 5929 . . . . 5  |-  ( ( ( S `  C
)  Fn  ( 1 ... ( M  +  N ) )  /\  ( 1 ... J
)  C_  ( 1 ... ( M  +  N ) ) )  ->  ( k  e.  ( ( S `  C ) " (
1 ... J ) )  <->  E. j  e.  (
1 ... J ) ( ( S `  C
) `  j )  =  k ) )
4027, 38, 39syl2anc 661 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( k  e.  ( ( S `  C ) " (
1 ... J ) )  <->  E. j  e.  (
1 ... J ) ( ( S `  C
) `  j )  =  k ) )
4140adantr 465 . . 3  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( S `  C )
" ( 1 ... J ) )  <->  E. j  e.  ( 1 ... J
) ( ( S `
 C ) `  j )  =  k ) )
42 1zzd 10916 . . . . . . . . . . 11  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  1  e.  ZZ )
432nnzi 10909 . . . . . . . . . . . . 13  |-  M  e.  ZZ
443nnzi 10909 . . . . . . . . . . . . 13  |-  N  e.  ZZ
45 zaddcl 10925 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  N
)  e.  ZZ )
4643, 44, 45mp2an 672 . . . . . . . . . . . 12  |-  ( M  +  N )  e.  ZZ
4746a1i 11 . . . . . . . . . . 11  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( M  +  N )  e.  ZZ )
48 elfzelz 11713 . . . . . . . . . . . 12  |-  ( J  e.  ( 1 ... ( I `  C
) )  ->  J  e.  ZZ )
4948adantl 466 . . . . . . . . . . 11  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  J  e.  ZZ )
50 elfzle1 11714 . . . . . . . . . . . 12  |-  ( J  e.  ( 1 ... ( I `  C
) )  ->  1  <_  J )
5150adantl 466 . . . . . . . . . . 11  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  1  <_  J
)
5249zred 10990 . . . . . . . . . . . 12  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  J  e.  RR )
53 elfzelz 11713 . . . . . . . . . . . . . . 15  |-  ( ( I `  C )  e.  ( 1 ... ( M  +  N
) )  ->  (
I `  C )  e.  ZZ )
5429, 53syl 16 . . . . . . . . . . . . . 14  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  e.  ZZ )
5554adantr 465 . . . . . . . . . . . . 13  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( I `  C )  e.  ZZ )
5655zred 10990 . . . . . . . . . . . 12  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( I `  C )  e.  RR )
5747zred 10990 . . . . . . . . . . . 12  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( M  +  N )  e.  RR )
58 elfzle2 11715 . . . . . . . . . . . . 13  |-  ( J  e.  ( 1 ... ( I `  C
) )  ->  J  <_  ( I `  C
) )
5958adantl 466 . . . . . . . . . . . 12  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  J  <_  (
I `  C )
)
60 elfzle2 11715 . . . . . . . . . . . . . 14  |-  ( ( I `  C )  e.  ( 1 ... ( M  +  N
) )  ->  (
I `  C )  <_  ( M  +  N
) )
6129, 60syl 16 . . . . . . . . . . . . 13  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  <_  ( M  +  N
) )
6261adantr 465 . . . . . . . . . . . 12  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( I `  C )  <_  ( M  +  N )
)
6352, 56, 57, 59, 62letrd 9756 . . . . . . . . . . 11  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  J  <_  ( M  +  N )
)
64 elfz4 11706 . . . . . . . . . . 11  |-  ( ( ( 1  e.  ZZ  /\  ( M  +  N
)  e.  ZZ  /\  J  e.  ZZ )  /\  ( 1  <_  J  /\  J  <_  ( M  +  N ) ) )  ->  J  e.  ( 1 ... ( M  +  N )
) )
6542, 47, 49, 51, 63, 64syl32anc 1236 . . . . . . . . . 10  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  J  e.  ( 1 ... ( M  +  N ) ) )
662, 3, 4, 5, 6, 7, 8, 9, 10ballotlemsv 28645 . . . . . . . . . 10  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  ->  ( ( S `
 C ) `  J )  =  if ( J  <_  (
I `  C ) ,  ( ( ( I `  C )  +  1 )  -  J ) ,  J
) )
6765, 66syldan 470 . . . . . . . . 9  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) `  J )  =  if ( J  <_  (
I `  C ) ,  ( ( ( I `  C )  +  1 )  -  J ) ,  J
) )
68 simpr 461 . . . . . . . . . 10  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  J  e.  ( 1 ... ( I `
 C ) ) )
69 iftrue 3950 . . . . . . . . . 10  |-  ( J  <_  ( I `  C )  ->  if ( J  <_  ( I `
 C ) ,  ( ( ( I `
 C )  +  1 )  -  J
) ,  J )  =  ( ( ( I `  C )  +  1 )  -  J ) )
7068, 58, 693syl 20 . . . . . . . . 9  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  if ( J  <_  ( I `  C ) ,  ( ( ( I `  C )  +  1 )  -  J ) ,  J )  =  ( ( ( I `
 C )  +  1 )  -  J
) )
7167, 70eqtrd 2498 . . . . . . . 8  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) `  J )  =  ( ( ( I `  C )  +  1 )  -  J ) )
7271oveq1d 6311 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( S `  C ) `
 J ) ... ( I `  C
) )  =  ( ( ( ( I `
 C )  +  1 )  -  J
) ... ( I `  C ) ) )
7372eleq2d 2527 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( k  e.  ( ( ( S `
 C ) `  J ) ... (
I `  C )
)  <->  k  e.  ( ( ( ( I `
 C )  +  1 )  -  J
) ... ( I `  C ) ) ) )
7473adantr 465 . . . . 5  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( ( S `  C
) `  J ) ... ( I `  C
) )  <->  k  e.  ( ( ( ( I `  C )  +  1 )  -  J ) ... (
I `  C )
) ) )
7554ad2antrr 725 . . . . . . . . 9  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
I `  C )  e.  ZZ )
7675zcnd 10991 . . . . . . . 8  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
I `  C )  e.  CC )
77 1cnd 9629 . . . . . . . 8  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  1  e.  CC )
7876, 77pncand 9951 . . . . . . 7  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
( ( I `  C )  +  1 )  -  1 )  =  ( I `  C ) )
7978oveq2d 6312 . . . . . 6  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
( ( ( I `
 C )  +  1 )  -  J
) ... ( ( ( I `  C )  +  1 )  - 
1 ) )  =  ( ( ( ( I `  C )  +  1 )  -  J ) ... (
I `  C )
) )
8079eleq2d 2527 . . . . 5  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( ( ( I `  C )  +  1 )  -  J ) ... ( ( ( I `  C )  +  1 )  - 
1 ) )  <->  k  e.  ( ( ( ( I `  C )  +  1 )  -  J ) ... (
I `  C )
) ) )
81 1zzd 10916 . . . . . 6  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  1  e.  ZZ )
8248ad2antlr 726 . . . . . 6  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  J  e.  ZZ )
8375peano2zd 10993 . . . . . 6  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
( I `  C
)  +  1 )  e.  ZZ )
84 simpr 461 . . . . . 6  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  k  e.  ZZ )
85 fzrev 11768 . . . . . 6  |-  ( ( ( 1  e.  ZZ  /\  J  e.  ZZ )  /\  ( ( ( I `  C )  +  1 )  e.  ZZ  /\  k  e.  ZZ ) )  -> 
( k  e.  ( ( ( ( I `
 C )  +  1 )  -  J
) ... ( ( ( I `  C )  +  1 )  - 
1 ) )  <->  ( (
( I `  C
)  +  1 )  -  k )  e.  ( 1 ... J
) ) )
8681, 82, 83, 84, 85syl22anc 1229 . . . . 5  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( ( ( I `  C )  +  1 )  -  J ) ... ( ( ( I `  C )  +  1 )  - 
1 ) )  <->  ( (
( I `  C
)  +  1 )  -  k )  e.  ( 1 ... J
) ) )
8774, 80, 863bitr2d 281 . . . 4  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( ( S `  C
) `  J ) ... ( I `  C
) )  <->  ( (
( I `  C
)  +  1 )  -  k )  e.  ( 1 ... J
) ) )
88 risset 2982 . . . . 5  |-  ( ( ( ( I `  C )  +  1 )  -  k )  e.  ( 1 ... J )  <->  E. j  e.  ( 1 ... J
) j  =  ( ( ( I `  C )  +  1 )  -  k ) )
8988a1i 11 . . . 4  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
( ( ( I `
 C )  +  1 )  -  k
)  e.  ( 1 ... J )  <->  E. j  e.  ( 1 ... J
) j  =  ( ( ( I `  C )  +  1 )  -  k ) ) )
90 eqcom 2466 . . . . . . 7  |-  ( ( ( ( I `  C )  +  1 )  -  k )  =  j  <->  j  =  ( ( ( I `
 C )  +  1 )  -  k
) )
9154ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  (
I `  C )  e.  ZZ )
9291adantlr 714 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  (
I `  C )  e.  ZZ )
9392zcnd 10991 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  (
I `  C )  e.  CC )
94 1cnd 9629 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  1  e.  CC )
9593, 94addcld 9632 . . . . . . . 8  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  (
( I `  C
)  +  1 )  e.  CC )
96 simplr 755 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  k  e.  ZZ )
9796zcnd 10991 . . . . . . . 8  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  k  e.  CC )
98 elfzelz 11713 . . . . . . . . . 10  |-  ( j  e.  ( 1 ... J )  ->  j  e.  ZZ )
9998adantl 466 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  j  e.  ZZ )
10099zcnd 10991 . . . . . . . 8  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  j  e.  CC )
101 subsub23 9844 . . . . . . . 8  |-  ( ( ( ( I `  C )  +  1 )  e.  CC  /\  k  e.  CC  /\  j  e.  CC )  ->  (
( ( ( I `
 C )  +  1 )  -  k
)  =  j  <->  ( (
( I `  C
)  +  1 )  -  j )  =  k ) )
10295, 97, 100, 101syl3anc 1228 . . . . . . 7  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  (
( ( ( I `
 C )  +  1 )  -  k
)  =  j  <->  ( (
( I `  C
)  +  1 )  -  j )  =  k ) )
10390, 102syl5bbr 259 . . . . . 6  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  (
j  =  ( ( ( I `  C
)  +  1 )  -  k )  <->  ( (
( I `  C
)  +  1 )  -  j )  =  k ) )
104 simpll 753 . . . . . . . . . 10  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  C  e.  ( O  \  E
) )
10538sselda 3499 . . . . . . . . . 10  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  j  e.  ( 1 ... ( M  +  N )
) )
1062, 3, 4, 5, 6, 7, 8, 9, 10ballotlemsv 28645 . . . . . . . . . 10  |-  ( ( C  e.  ( O 
\  E )  /\  j  e.  ( 1 ... ( M  +  N ) ) )  ->  ( ( S `
 C ) `  j )  =  if ( j  <_  (
I `  C ) ,  ( ( ( I `  C )  +  1 )  -  j ) ,  j ) )
107104, 105, 106syl2anc 661 . . . . . . . . 9  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  (
( S `  C
) `  j )  =  if ( j  <_ 
( I `  C
) ,  ( ( ( I `  C
)  +  1 )  -  j ) ,  j ) )
10898adantl 466 . . . . . . . . . . . 12  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  j  e.  ZZ )
109108zred 10990 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  j  e.  RR )
11048ad2antlr 726 . . . . . . . . . . . 12  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  J  e.  ZZ )
111110zred 10990 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  J  e.  RR )
11291zred 10990 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  (
I `  C )  e.  RR )
113 elfzle2 11715 . . . . . . . . . . . 12  |-  ( j  e.  ( 1 ... J )  ->  j  <_  J )
114113adantl 466 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  j  <_  J )
11558ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  J  <_  ( I `  C
) )
116109, 111, 112, 114, 115letrd 9756 . . . . . . . . . 10  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  j  <_  ( I `  C
) )
117 iftrue 3950 . . . . . . . . . 10  |-  ( j  <_  ( I `  C )  ->  if ( j  <_  (
I `  C ) ,  ( ( ( I `  C )  +  1 )  -  j ) ,  j )  =  ( ( ( I `  C
)  +  1 )  -  j ) )
118116, 117syl 16 . . . . . . . . 9  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  if ( j  <_  (
I `  C ) ,  ( ( ( I `  C )  +  1 )  -  j ) ,  j )  =  ( ( ( I `  C
)  +  1 )  -  j ) )
119107, 118eqtrd 2498 . . . . . . . 8  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  (
( S `  C
) `  j )  =  ( ( ( I `  C )  +  1 )  -  j ) )
120119eqeq1d 2459 . . . . . . 7  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  (
( ( S `  C ) `  j
)  =  k  <->  ( (
( I `  C
)  +  1 )  -  j )  =  k ) )
121120adantlr 714 . . . . . 6  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  (
( ( S `  C ) `  j
)  =  k  <->  ( (
( I `  C
)  +  1 )  -  j )  =  k ) )
122103, 121bitr4d 256 . . . . 5  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  (
j  =  ( ( ( I `  C
)  +  1 )  -  k )  <->  ( ( S `  C ) `  j )  =  k ) )
123122rexbidva 2965 . . . 4  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  ( E. j  e.  (
1 ... J ) j  =  ( ( ( I `  C )  +  1 )  -  k )  <->  E. j  e.  ( 1 ... J
) ( ( S `
 C ) `  j )  =  k ) )
12487, 89, 1233bitrd 279 . . 3  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( ( S `  C
) `  J ) ... ( I `  C
) )  <->  E. j  e.  ( 1 ... J
) ( ( S `
 C ) `  j )  =  k ) )
12541, 124bitr4d 256 . 2  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( S `  C )
" ( 1 ... J ) )  <->  k  e.  ( ( ( S `
 C ) `  J ) ... (
I `  C )
) ) )
12622, 24, 125eqrdav 2455 1  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) "
( 1 ... J
) )  =  ( ( ( S `  C ) `  J
) ... ( I `  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   E.wrex 2808   {crab 2811    \ cdif 3468    i^i cin 3470    C_ wss 3471   ifcif 3944   ~Pcpw 4015   class class class wbr 4456    |-> cmpt 4515   `'ccnv 5007   ran crn 5009   "cima 5011    Fn wfn 5589   -->wf 5590   -1-1-onto->wf1o 5593   ` cfv 5594  (class class class)co 6296   supcsup 7918   CCcc 9507   RRcr 9508   0cc0 9509   1c1 9510    + caddc 9512    < clt 9645    <_ cle 9646    - cmin 9824    / cdiv 10227   NNcn 10556   ZZcz 10885   ZZ>=cuz 11106   ...cfz 11697   #chash 12408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-card 8337  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-n0 10817  df-z 10886  df-uz 11107  df-rp 11246  df-fz 11698  df-hash 12409
This theorem is referenced by:  ballotlemfrc  28662
  Copyright terms: Public domain W3C validator