Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemsima Structured version   Visualization version   Unicode version

Theorem ballotlemsima 29341
Description: The image by  S of an interval before the first pick. (Contributed by Thierry Arnoux, 5-May-2017.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotth.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
ballotth.e  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
ballotth.mgtn  |-  N  < 
M
ballotth.i  |-  I  =  ( c  e.  ( O  \  E ) 
|-> inf ( { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  c ) `
 k )  =  0 } ,  RR ,  <  ) )
ballotth.s  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
Assertion
Ref Expression
ballotlemsima  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) "
( 1 ... J
) )  =  ( ( ( S `  C ) `  J
) ... ( I `  C ) ) )
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O    k, M    k, N    k, O    i, c, F, k    C, i, k    i, E, k    C, k    k, I, c    E, c    i, I, c    k, J    S, k
Allowed substitution hints:    C( x, c)    P( x, i, k, c)    S( x, i, c)    E( x)    F( x)    I( x)    J( x, i, c)    M( x)    N( x)    O( x)

Proof of Theorem ballotlemsima
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 imassrn 5178 . . . . . 6  |-  ( ( S `  C )
" ( 1 ... J ) )  C_  ran  ( S `  C
)
2 ballotth.m . . . . . . . . 9  |-  M  e.  NN
3 ballotth.n . . . . . . . . 9  |-  N  e.  NN
4 ballotth.o . . . . . . . . 9  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
5 ballotth.p . . . . . . . . 9  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
6 ballotth.f . . . . . . . . 9  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
7 ballotth.e . . . . . . . . 9  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
8 ballotth.mgtn . . . . . . . . 9  |-  N  < 
M
9 ballotth.i . . . . . . . . 9  |-  I  =  ( c  e.  ( O  \  E ) 
|-> inf ( { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  c ) `
 k )  =  0 } ,  RR ,  <  ) )
10 ballotth.s . . . . . . . . 9  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
112, 3, 4, 5, 6, 7, 8, 9, 10ballotlemsf1o 29339 . . . . . . . 8  |-  ( C  e.  ( O  \  E )  ->  (
( S `  C
) : ( 1 ... ( M  +  N ) ) -1-1-onto-> ( 1 ... ( M  +  N ) )  /\  `' ( S `  C )  =  ( S `  C ) ) )
1211simpld 461 . . . . . . 7  |-  ( C  e.  ( O  \  E )  ->  ( S `  C ) : ( 1 ... ( M  +  N
) ) -1-1-onto-> ( 1 ... ( M  +  N )
) )
13 f1of 5812 . . . . . . 7  |-  ( ( S `  C ) : ( 1 ... ( M  +  N
) ) -1-1-onto-> ( 1 ... ( M  +  N )
)  ->  ( S `  C ) : ( 1 ... ( M  +  N ) ) --> ( 1 ... ( M  +  N )
) )
14 frn 5733 . . . . . . 7  |-  ( ( S `  C ) : ( 1 ... ( M  +  N
) ) --> ( 1 ... ( M  +  N ) )  ->  ran  ( S `  C
)  C_  ( 1 ... ( M  +  N ) ) )
1512, 13, 143syl 18 . . . . . 6  |-  ( C  e.  ( O  \  E )  ->  ran  ( S `  C ) 
C_  ( 1 ... ( M  +  N
) ) )
161, 15syl5ss 3442 . . . . 5  |-  ( C  e.  ( O  \  E )  ->  (
( S `  C
) " ( 1 ... J ) ) 
C_  ( 1 ... ( M  +  N
) ) )
17 fzssuz 11836 . . . . . 6  |-  ( 1 ... ( M  +  N ) )  C_  ( ZZ>= `  1 )
18 uzssz 11175 . . . . . 6  |-  ( ZZ>= ` 
1 )  C_  ZZ
1917, 18sstri 3440 . . . . 5  |-  ( 1 ... ( M  +  N ) )  C_  ZZ
2016, 19syl6ss 3443 . . . 4  |-  ( C  e.  ( O  \  E )  ->  (
( S `  C
) " ( 1 ... J ) ) 
C_  ZZ )
2120adantr 467 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) "
( 1 ... J
) )  C_  ZZ )
2221sselda 3431 . 2  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ( ( S `  C ) " (
1 ... J ) ) )  ->  k  e.  ZZ )
23 elfzelz 11797 . . 3  |-  ( k  e.  ( ( ( S `  C ) `
 J ) ... ( I `  C
) )  ->  k  e.  ZZ )
2423adantl 468 . 2  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ( ( ( S `
 C ) `  J ) ... (
I `  C )
) )  ->  k  e.  ZZ )
25 f1ofn 5813 . . . . . . 7  |-  ( ( S `  C ) : ( 1 ... ( M  +  N
) ) -1-1-onto-> ( 1 ... ( M  +  N )
)  ->  ( S `  C )  Fn  (
1 ... ( M  +  N ) ) )
2612, 25syl 17 . . . . . 6  |-  ( C  e.  ( O  \  E )  ->  ( S `  C )  Fn  ( 1 ... ( M  +  N )
) )
2726adantr 467 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( S `  C )  Fn  (
1 ... ( M  +  N ) ) )
282, 3, 4, 5, 6, 7, 8, 9ballotlemiex 29327 . . . . . . . . . 10  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  e.  ( 1 ... ( M  +  N ) )  /\  ( ( F `  C ) `  (
I `  C )
)  =  0 ) )
2928simpld 461 . . . . . . . . 9  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  e.  ( 1 ... ( M  +  N )
) )
3029adantr 467 . . . . . . . 8  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( I `  C )  e.  ( 1 ... ( M  +  N ) ) )
31 elfzuz3 11794 . . . . . . . 8  |-  ( ( I `  C )  e.  ( 1 ... ( M  +  N
) )  ->  ( M  +  N )  e.  ( ZZ>= `  ( I `  C ) ) )
3230, 31syl 17 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( M  +  N )  e.  (
ZZ>= `  ( I `  C ) ) )
33 elfzuz3 11794 . . . . . . . 8  |-  ( J  e.  ( 1 ... ( I `  C
) )  ->  (
I `  C )  e.  ( ZZ>= `  J )
)
3433adantl 468 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( I `  C )  e.  (
ZZ>= `  J ) )
35 uztrn 11172 . . . . . . 7  |-  ( ( ( M  +  N
)  e.  ( ZZ>= `  ( I `  C
) )  /\  (
I `  C )  e.  ( ZZ>= `  J )
)  ->  ( M  +  N )  e.  (
ZZ>= `  J ) )
3632, 34, 35syl2anc 666 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( M  +  N )  e.  (
ZZ>= `  J ) )
37 fzss2 11835 . . . . . 6  |-  ( ( M  +  N )  e.  ( ZZ>= `  J
)  ->  ( 1 ... J )  C_  ( 1 ... ( M  +  N )
) )
3836, 37syl 17 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( 1 ... J )  C_  (
1 ... ( M  +  N ) ) )
39 fvelimab 5919 . . . . 5  |-  ( ( ( S `  C
)  Fn  ( 1 ... ( M  +  N ) )  /\  ( 1 ... J
)  C_  ( 1 ... ( M  +  N ) ) )  ->  ( k  e.  ( ( S `  C ) " (
1 ... J ) )  <->  E. j  e.  (
1 ... J ) ( ( S `  C
) `  j )  =  k ) )
4027, 38, 39syl2anc 666 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( k  e.  ( ( S `  C ) " (
1 ... J ) )  <->  E. j  e.  (
1 ... J ) ( ( S `  C
) `  j )  =  k ) )
4140adantr 467 . . 3  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( S `  C )
" ( 1 ... J ) )  <->  E. j  e.  ( 1 ... J
) ( ( S `
 C ) `  j )  =  k ) )
42 1zzd 10965 . . . . . . . . . . 11  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  1  e.  ZZ )
432nnzi 10958 . . . . . . . . . . . . 13  |-  M  e.  ZZ
443nnzi 10958 . . . . . . . . . . . . 13  |-  N  e.  ZZ
45 zaddcl 10974 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  N
)  e.  ZZ )
4643, 44, 45mp2an 677 . . . . . . . . . . . 12  |-  ( M  +  N )  e.  ZZ
4746a1i 11 . . . . . . . . . . 11  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( M  +  N )  e.  ZZ )
48 elfzelz 11797 . . . . . . . . . . . 12  |-  ( J  e.  ( 1 ... ( I `  C
) )  ->  J  e.  ZZ )
4948adantl 468 . . . . . . . . . . 11  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  J  e.  ZZ )
50 elfzle1 11799 . . . . . . . . . . . 12  |-  ( J  e.  ( 1 ... ( I `  C
) )  ->  1  <_  J )
5150adantl 468 . . . . . . . . . . 11  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  1  <_  J
)
5249zred 11037 . . . . . . . . . . . 12  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  J  e.  RR )
53 elfzelz 11797 . . . . . . . . . . . . . . 15  |-  ( ( I `  C )  e.  ( 1 ... ( M  +  N
) )  ->  (
I `  C )  e.  ZZ )
5429, 53syl 17 . . . . . . . . . . . . . 14  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  e.  ZZ )
5554adantr 467 . . . . . . . . . . . . 13  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( I `  C )  e.  ZZ )
5655zred 11037 . . . . . . . . . . . 12  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( I `  C )  e.  RR )
5747zred 11037 . . . . . . . . . . . 12  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( M  +  N )  e.  RR )
58 elfzle2 11800 . . . . . . . . . . . . 13  |-  ( J  e.  ( 1 ... ( I `  C
) )  ->  J  <_  ( I `  C
) )
5958adantl 468 . . . . . . . . . . . 12  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  J  <_  (
I `  C )
)
60 elfzle2 11800 . . . . . . . . . . . . . 14  |-  ( ( I `  C )  e.  ( 1 ... ( M  +  N
) )  ->  (
I `  C )  <_  ( M  +  N
) )
6129, 60syl 17 . . . . . . . . . . . . 13  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  <_  ( M  +  N
) )
6261adantr 467 . . . . . . . . . . . 12  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( I `  C )  <_  ( M  +  N )
)
6352, 56, 57, 59, 62letrd 9789 . . . . . . . . . . 11  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  J  <_  ( M  +  N )
)
64 elfz4 11790 . . . . . . . . . . 11  |-  ( ( ( 1  e.  ZZ  /\  ( M  +  N
)  e.  ZZ  /\  J  e.  ZZ )  /\  ( 1  <_  J  /\  J  <_  ( M  +  N ) ) )  ->  J  e.  ( 1 ... ( M  +  N )
) )
6542, 47, 49, 51, 63, 64syl32anc 1275 . . . . . . . . . 10  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  J  e.  ( 1 ... ( M  +  N ) ) )
662, 3, 4, 5, 6, 7, 8, 9, 10ballotlemsv 29335 . . . . . . . . . 10  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  ->  ( ( S `
 C ) `  J )  =  if ( J  <_  (
I `  C ) ,  ( ( ( I `  C )  +  1 )  -  J ) ,  J
) )
6765, 66syldan 473 . . . . . . . . 9  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) `  J )  =  if ( J  <_  (
I `  C ) ,  ( ( ( I `  C )  +  1 )  -  J ) ,  J
) )
68 simpr 463 . . . . . . . . . 10  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  J  e.  ( 1 ... ( I `
 C ) ) )
69 iftrue 3886 . . . . . . . . . 10  |-  ( J  <_  ( I `  C )  ->  if ( J  <_  ( I `
 C ) ,  ( ( ( I `
 C )  +  1 )  -  J
) ,  J )  =  ( ( ( I `  C )  +  1 )  -  J ) )
7068, 58, 693syl 18 . . . . . . . . 9  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  if ( J  <_  ( I `  C ) ,  ( ( ( I `  C )  +  1 )  -  J ) ,  J )  =  ( ( ( I `
 C )  +  1 )  -  J
) )
7167, 70eqtrd 2484 . . . . . . . 8  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) `  J )  =  ( ( ( I `  C )  +  1 )  -  J ) )
7271oveq1d 6303 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( S `  C ) `
 J ) ... ( I `  C
) )  =  ( ( ( ( I `
 C )  +  1 )  -  J
) ... ( I `  C ) ) )
7372eleq2d 2513 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( k  e.  ( ( ( S `
 C ) `  J ) ... (
I `  C )
)  <->  k  e.  ( ( ( ( I `
 C )  +  1 )  -  J
) ... ( I `  C ) ) ) )
7473adantr 467 . . . . 5  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( ( S `  C
) `  J ) ... ( I `  C
) )  <->  k  e.  ( ( ( ( I `  C )  +  1 )  -  J ) ... (
I `  C )
) ) )
7554ad2antrr 731 . . . . . . . . 9  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
I `  C )  e.  ZZ )
7675zcnd 11038 . . . . . . . 8  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
I `  C )  e.  CC )
77 1cnd 9656 . . . . . . . 8  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  1  e.  CC )
7876, 77pncand 9984 . . . . . . 7  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
( ( I `  C )  +  1 )  -  1 )  =  ( I `  C ) )
7978oveq2d 6304 . . . . . 6  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
( ( ( I `
 C )  +  1 )  -  J
) ... ( ( ( I `  C )  +  1 )  - 
1 ) )  =  ( ( ( ( I `  C )  +  1 )  -  J ) ... (
I `  C )
) )
8079eleq2d 2513 . . . . 5  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( ( ( I `  C )  +  1 )  -  J ) ... ( ( ( I `  C )  +  1 )  - 
1 ) )  <->  k  e.  ( ( ( ( I `  C )  +  1 )  -  J ) ... (
I `  C )
) ) )
81 1zzd 10965 . . . . . 6  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  1  e.  ZZ )
8248ad2antlr 732 . . . . . 6  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  J  e.  ZZ )
8375peano2zd 11040 . . . . . 6  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
( I `  C
)  +  1 )  e.  ZZ )
84 simpr 463 . . . . . 6  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  k  e.  ZZ )
85 fzrev 11855 . . . . . 6  |-  ( ( ( 1  e.  ZZ  /\  J  e.  ZZ )  /\  ( ( ( I `  C )  +  1 )  e.  ZZ  /\  k  e.  ZZ ) )  -> 
( k  e.  ( ( ( ( I `
 C )  +  1 )  -  J
) ... ( ( ( I `  C )  +  1 )  - 
1 ) )  <->  ( (
( I `  C
)  +  1 )  -  k )  e.  ( 1 ... J
) ) )
8681, 82, 83, 84, 85syl22anc 1268 . . . . 5  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( ( ( I `  C )  +  1 )  -  J ) ... ( ( ( I `  C )  +  1 )  - 
1 ) )  <->  ( (
( I `  C
)  +  1 )  -  k )  e.  ( 1 ... J
) ) )
8774, 80, 863bitr2d 285 . . . 4  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( ( S `  C
) `  J ) ... ( I `  C
) )  <->  ( (
( I `  C
)  +  1 )  -  k )  e.  ( 1 ... J
) ) )
88 risset 2914 . . . . 5  |-  ( ( ( ( I `  C )  +  1 )  -  k )  e.  ( 1 ... J )  <->  E. j  e.  ( 1 ... J
) j  =  ( ( ( I `  C )  +  1 )  -  k ) )
8988a1i 11 . . . 4  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
( ( ( I `
 C )  +  1 )  -  k
)  e.  ( 1 ... J )  <->  E. j  e.  ( 1 ... J
) j  =  ( ( ( I `  C )  +  1 )  -  k ) ) )
90 eqcom 2457 . . . . . . 7  |-  ( ( ( ( I `  C )  +  1 )  -  k )  =  j  <->  j  =  ( ( ( I `
 C )  +  1 )  -  k
) )
9154ad2antrr 731 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  (
I `  C )  e.  ZZ )
9291adantlr 720 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  (
I `  C )  e.  ZZ )
9392zcnd 11038 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  (
I `  C )  e.  CC )
94 1cnd 9656 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  1  e.  CC )
9593, 94addcld 9659 . . . . . . . 8  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  (
( I `  C
)  +  1 )  e.  CC )
96 simplr 761 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  k  e.  ZZ )
9796zcnd 11038 . . . . . . . 8  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  k  e.  CC )
98 elfzelz 11797 . . . . . . . . . 10  |-  ( j  e.  ( 1 ... J )  ->  j  e.  ZZ )
9998adantl 468 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  j  e.  ZZ )
10099zcnd 11038 . . . . . . . 8  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  j  e.  CC )
101 subsub23 9877 . . . . . . . 8  |-  ( ( ( ( I `  C )  +  1 )  e.  CC  /\  k  e.  CC  /\  j  e.  CC )  ->  (
( ( ( I `
 C )  +  1 )  -  k
)  =  j  <->  ( (
( I `  C
)  +  1 )  -  j )  =  k ) )
10295, 97, 100, 101syl3anc 1267 . . . . . . 7  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  (
( ( ( I `
 C )  +  1 )  -  k
)  =  j  <->  ( (
( I `  C
)  +  1 )  -  j )  =  k ) )
10390, 102syl5bbr 263 . . . . . 6  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  (
j  =  ( ( ( I `  C
)  +  1 )  -  k )  <->  ( (
( I `  C
)  +  1 )  -  j )  =  k ) )
104 simpll 759 . . . . . . . . . 10  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  C  e.  ( O  \  E
) )
10538sselda 3431 . . . . . . . . . 10  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  j  e.  ( 1 ... ( M  +  N )
) )
1062, 3, 4, 5, 6, 7, 8, 9, 10ballotlemsv 29335 . . . . . . . . . 10  |-  ( ( C  e.  ( O 
\  E )  /\  j  e.  ( 1 ... ( M  +  N ) ) )  ->  ( ( S `
 C ) `  j )  =  if ( j  <_  (
I `  C ) ,  ( ( ( I `  C )  +  1 )  -  j ) ,  j ) )
107104, 105, 106syl2anc 666 . . . . . . . . 9  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  (
( S `  C
) `  j )  =  if ( j  <_ 
( I `  C
) ,  ( ( ( I `  C
)  +  1 )  -  j ) ,  j ) )
10898adantl 468 . . . . . . . . . . . 12  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  j  e.  ZZ )
109108zred 11037 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  j  e.  RR )
11048ad2antlr 732 . . . . . . . . . . . 12  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  J  e.  ZZ )
111110zred 11037 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  J  e.  RR )
11291zred 11037 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  (
I `  C )  e.  RR )
113 elfzle2 11800 . . . . . . . . . . . 12  |-  ( j  e.  ( 1 ... J )  ->  j  <_  J )
114113adantl 468 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  j  <_  J )
11558ad2antlr 732 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  J  <_  ( I `  C
) )
116109, 111, 112, 114, 115letrd 9789 . . . . . . . . . 10  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  j  <_  ( I `  C
) )
117 iftrue 3886 . . . . . . . . . 10  |-  ( j  <_  ( I `  C )  ->  if ( j  <_  (
I `  C ) ,  ( ( ( I `  C )  +  1 )  -  j ) ,  j )  =  ( ( ( I `  C
)  +  1 )  -  j ) )
118116, 117syl 17 . . . . . . . . 9  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  if ( j  <_  (
I `  C ) ,  ( ( ( I `  C )  +  1 )  -  j ) ,  j )  =  ( ( ( I `  C
)  +  1 )  -  j ) )
119107, 118eqtrd 2484 . . . . . . . 8  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  (
( S `  C
) `  j )  =  ( ( ( I `  C )  +  1 )  -  j ) )
120119eqeq1d 2452 . . . . . . 7  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  (
( ( S `  C ) `  j
)  =  k  <->  ( (
( I `  C
)  +  1 )  -  j )  =  k ) )
121120adantlr 720 . . . . . 6  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  (
( ( S `  C ) `  j
)  =  k  <->  ( (
( I `  C
)  +  1 )  -  j )  =  k ) )
122103, 121bitr4d 260 . . . . 5  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  (
j  =  ( ( ( I `  C
)  +  1 )  -  k )  <->  ( ( S `  C ) `  j )  =  k ) )
123122rexbidva 2897 . . . 4  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  ( E. j  e.  (
1 ... J ) j  =  ( ( ( I `  C )  +  1 )  -  k )  <->  E. j  e.  ( 1 ... J
) ( ( S `
 C ) `  j )  =  k ) )
12487, 89, 1233bitrd 283 . . 3  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( ( S `  C
) `  J ) ... ( I `  C
) )  <->  E. j  e.  ( 1 ... J
) ( ( S `
 C ) `  j )  =  k ) )
12541, 124bitr4d 260 . 2  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( S `  C )
" ( 1 ... J ) )  <->  k  e.  ( ( ( S `
 C ) `  J ) ... (
I `  C )
) ) )
12622, 24, 125eqrdav 2449 1  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) "
( 1 ... J
) )  =  ( ( ( S `  C ) `  J
) ... ( I `  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1443    e. wcel 1886   A.wral 2736   E.wrex 2737   {crab 2740    \ cdif 3400    i^i cin 3402    C_ wss 3403   ifcif 3880   ~Pcpw 3950   class class class wbr 4401    |-> cmpt 4460   `'ccnv 4832   ran crn 4834   "cima 4836    Fn wfn 5576   -->wf 5577   -1-1-onto->wf1o 5580   ` cfv 5581  (class class class)co 6288  infcinf 7952   CCcc 9534   RRcr 9535   0cc0 9536   1c1 9537    + caddc 9539    < clt 9672    <_ cle 9673    - cmin 9857    / cdiv 10266   NNcn 10606   ZZcz 10934   ZZ>=cuz 11156   ...cfz 11781   #chash 12512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-cnex 9592  ax-resscn 9593  ax-1cn 9594  ax-icn 9595  ax-addcl 9596  ax-addrcl 9597  ax-mulcl 9598  ax-mulrcl 9599  ax-mulcom 9600  ax-addass 9601  ax-mulass 9602  ax-distr 9603  ax-i2m1 9604  ax-1ne0 9605  ax-1rid 9606  ax-rnegex 9607  ax-rrecex 9608  ax-cnre 9609  ax-pre-lttri 9610  ax-pre-lttrn 9611  ax-pre-ltadd 9612  ax-pre-mulgt0 9613
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-int 4234  df-iun 4279  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6250  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-om 6690  df-1st 6790  df-2nd 6791  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-1o 7179  df-oadd 7183  df-er 7360  df-en 7567  df-dom 7568  df-sdom 7569  df-fin 7570  df-sup 7953  df-inf 7954  df-card 8370  df-cda 8595  df-pnf 9674  df-mnf 9675  df-xr 9676  df-ltxr 9677  df-le 9678  df-sub 9859  df-neg 9860  df-nn 10607  df-2 10665  df-n0 10867  df-z 10935  df-uz 11157  df-rp 11300  df-fz 11782  df-hash 12513
This theorem is referenced by:  ballotlemfrc  29352
  Copyright terms: Public domain W3C validator