Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemsel1i Structured version   Unicode version

Theorem ballotlemsel1i 26894
Description: The range  ( 1 ... ( I `  C ) ) is invariant under  ( S `
 C ). (Contributed by Thierry Arnoux, 28-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotth.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
ballotth.e  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
ballotth.mgtn  |-  N  < 
M
ballotth.i  |-  I  =  ( c  e.  ( O  \  E ) 
|->  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  c
) `  k )  =  0 } ,  RR ,  `'  <  ) )
ballotth.s  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
Assertion
Ref Expression
ballotlemsel1i  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) `  J )  e.  ( 1 ... ( I `
 C ) ) )
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O    k, M    k, N    k, O    i, c, F, k    C, i, k    i, E, k    C, k    k, I, c    E, c    i, I, c
Allowed substitution hints:    C( x, c)    P( x, i, k, c)    S( x, i, k, c)    E( x)    F( x)    I( x)    J( x, i, k, c)    M( x)    N( x)    O( x)

Proof of Theorem ballotlemsel1i
StepHypRef Expression
1 1z 10675 . . 3  |-  1  e.  ZZ
21a1i 11 . 2  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  1  e.  ZZ )
3 ballotth.m . . . . . 6  |-  M  e.  NN
4 ballotth.n . . . . . 6  |-  N  e.  NN
5 ballotth.o . . . . . 6  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
6 ballotth.p . . . . . 6  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
7 ballotth.f . . . . . 6  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
8 ballotth.e . . . . . 6  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
9 ballotth.mgtn . . . . . 6  |-  N  < 
M
10 ballotth.i . . . . . 6  |-  I  =  ( c  e.  ( O  \  E ) 
|->  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  c
) `  k )  =  0 } ,  RR ,  `'  <  ) )
113, 4, 5, 6, 7, 8, 9, 10ballotlemiex 26883 . . . . 5  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  e.  ( 1 ... ( M  +  N ) )  /\  ( ( F `  C ) `  (
I `  C )
)  =  0 ) )
1211simpld 459 . . . 4  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  e.  ( 1 ... ( M  +  N )
) )
13 elfzelz 11452 . . . 4  |-  ( ( I `  C )  e.  ( 1 ... ( M  +  N
) )  ->  (
I `  C )  e.  ZZ )
1412, 13syl 16 . . 3  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  e.  ZZ )
1514adantr 465 . 2  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( I `  C )  e.  ZZ )
16 nnaddcl 10343 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  +  N
)  e.  NN )
173, 4, 16mp2an 672 . . . . . . . . 9  |-  ( M  +  N )  e.  NN
1817nnzi 10669 . . . . . . . 8  |-  ( M  +  N )  e.  ZZ
1918a1i 11 . . . . . . 7  |-  ( C  e.  ( O  \  E )  ->  ( M  +  N )  e.  ZZ )
20 elfzle2 11454 . . . . . . . 8  |-  ( ( I `  C )  e.  ( 1 ... ( M  +  N
) )  ->  (
I `  C )  <_  ( M  +  N
) )
2112, 20syl 16 . . . . . . 7  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  <_  ( M  +  N
) )
22 eluz2 10866 . . . . . . 7  |-  ( ( M  +  N )  e.  ( ZZ>= `  (
I `  C )
)  <->  ( ( I `
 C )  e.  ZZ  /\  ( M  +  N )  e.  ZZ  /\  ( I `
 C )  <_ 
( M  +  N
) ) )
2314, 19, 21, 22syl3anbrc 1172 . . . . . 6  |-  ( C  e.  ( O  \  E )  ->  ( M  +  N )  e.  ( ZZ>= `  ( I `  C ) ) )
24 fzss2 11497 . . . . . 6  |-  ( ( M  +  N )  e.  ( ZZ>= `  (
I `  C )
)  ->  ( 1 ... ( I `  C ) )  C_  ( 1 ... ( M  +  N )
) )
2523, 24syl 16 . . . . 5  |-  ( C  e.  ( O  \  E )  ->  (
1 ... ( I `  C ) )  C_  ( 1 ... ( M  +  N )
) )
2625sselda 3355 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  J  e.  ( 1 ... ( M  +  N ) ) )
27 ballotth.s . . . . 5  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
283, 4, 5, 6, 7, 8, 9, 10, 27ballotlemsdom 26893 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  ->  ( ( S `
 C ) `  J )  e.  ( 1 ... ( M  +  N ) ) )
2926, 28syldan 470 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) `  J )  e.  ( 1 ... ( M  +  N ) ) )
30 elfzelz 11452 . . 3  |-  ( ( ( S `  C
) `  J )  e.  ( 1 ... ( M  +  N )
)  ->  ( ( S `  C ) `  J )  e.  ZZ )
3129, 30syl 16 . 2  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) `  J )  e.  ZZ )
32 elfzelz 11452 . . . . . 6  |-  ( J  e.  ( 1 ... ( I `  C
) )  ->  J  e.  ZZ )
3332adantl 466 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  J  e.  ZZ )
3433zred 10746 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  J  e.  RR )
3515zred 10746 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( I `  C )  e.  RR )
36 1re 9384 . . . . . 6  |-  1  e.  RR
3736a1i 11 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  1  e.  RR )
3835, 37readdcld 9412 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( I `
 C )  +  1 )  e.  RR )
39 elfzle2 11454 . . . . . 6  |-  ( J  e.  ( 1 ... ( I `  C
) )  ->  J  <_  ( I `  C
) )
4039adantl 466 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  J  <_  (
I `  C )
)
4115zcnd 10747 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( I `  C )  e.  CC )
42 ax-1cn 9339 . . . . . . 7  |-  1  e.  CC
4342a1i 11 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  1  e.  CC )
4441, 43pncand 9719 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( I `  C )  +  1 )  - 
1 )  =  ( I `  C ) )
4540, 44breqtrrd 4317 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  J  <_  (
( ( I `  C )  +  1 )  -  1 ) )
4634, 38, 37, 45lesubd 9942 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  1  <_  (
( ( I `  C )  +  1 )  -  J ) )
473, 4, 5, 6, 7, 8, 9, 10, 27ballotlemsv 26891 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  ->  ( ( S `
 C ) `  J )  =  if ( J  <_  (
I `  C ) ,  ( ( ( I `  C )  +  1 )  -  J ) ,  J
) )
4826, 47syldan 470 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) `  J )  =  if ( J  <_  (
I `  C ) ,  ( ( ( I `  C )  +  1 )  -  J ) ,  J
) )
49 iftrue 3796 . . . . 5  |-  ( J  <_  ( I `  C )  ->  if ( J  <_  ( I `
 C ) ,  ( ( ( I `
 C )  +  1 )  -  J
) ,  J )  =  ( ( ( I `  C )  +  1 )  -  J ) )
5040, 49syl 16 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  if ( J  <_  ( I `  C ) ,  ( ( ( I `  C )  +  1 )  -  J ) ,  J )  =  ( ( ( I `
 C )  +  1 )  -  J
) )
5148, 50eqtrd 2474 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) `  J )  =  ( ( ( I `  C )  +  1 )  -  J ) )
5246, 51breqtrrd 4317 . 2  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  1  <_  (
( S `  C
) `  J )
)
5314adantr 465 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  ->  ( I `  C )  e.  ZZ )
54 elfznn 11477 . . . . . 6  |-  ( J  e.  ( 1 ... ( M  +  N
) )  ->  J  e.  NN )
5554adantl 466 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  ->  J  e.  NN )
5653, 55ltesubnnd 26090 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  ->  ( ( ( I `  C )  +  1 )  -  J )  <_  (
I `  C )
)
5726, 56syldan 470 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( I `  C )  +  1 )  -  J )  <_  (
I `  C )
)
5851, 57eqbrtrd 4311 . 2  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) `  J )  <_  (
I `  C )
)
59 elfz4 11445 . 2  |-  ( ( ( 1  e.  ZZ  /\  ( I `  C
)  e.  ZZ  /\  ( ( S `  C ) `  J
)  e.  ZZ )  /\  ( 1  <_ 
( ( S `  C ) `  J
)  /\  ( ( S `  C ) `  J )  <_  (
I `  C )
) )  ->  (
( S `  C
) `  J )  e.  ( 1 ... (
I `  C )
) )
602, 15, 31, 52, 58, 59syl32anc 1226 1  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) `  J )  e.  ( 1 ... ( I `
 C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2714   {crab 2718    \ cdif 3324    i^i cin 3326    C_ wss 3327   ifcif 3790   ~Pcpw 3859   class class class wbr 4291    e. cmpt 4349   `'ccnv 4838   ` cfv 5417  (class class class)co 6090   supcsup 7689   CCcc 9279   RRcr 9280   0cc0 9281   1c1 9282    + caddc 9284    < clt 9417    <_ cle 9418    - cmin 9594    / cdiv 9992   NNcn 10321   ZZcz 10645   ZZ>=cuz 10860   ...cfz 11436   #chash 12102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-cnex 9337  ax-resscn 9338  ax-1cn 9339  ax-icn 9340  ax-addcl 9341  ax-addrcl 9342  ax-mulcl 9343  ax-mulrcl 9344  ax-mulcom 9345  ax-addass 9346  ax-mulass 9347  ax-distr 9348  ax-i2m1 9349  ax-1ne0 9350  ax-1rid 9351  ax-rnegex 9352  ax-rrecex 9353  ax-cnre 9354  ax-pre-lttri 9355  ax-pre-lttrn 9356  ax-pre-ltadd 9357  ax-pre-mulgt0 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-int 4128  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6831  df-rdg 6865  df-1o 6919  df-oadd 6923  df-er 7100  df-en 7310  df-dom 7311  df-sdom 7312  df-fin 7313  df-sup 7690  df-card 8108  df-cda 8336  df-pnf 9419  df-mnf 9420  df-xr 9421  df-ltxr 9422  df-le 9423  df-sub 9596  df-neg 9597  df-nn 10322  df-2 10379  df-n0 10579  df-z 10646  df-uz 10861  df-rp 10991  df-fz 11437  df-hash 12103
This theorem is referenced by:  ballotlemfrceq  26910  ballotlemfrcn0  26911
  Copyright terms: Public domain W3C validator