Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemodife Structured version   Visualization version   Unicode version

Theorem ballotlemodife 29379
Description: Elements of  ( O 
\  E ). (Contributed by Thierry Arnoux, 7-Dec-2016.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotth.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
ballotth.e  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
Assertion
Ref Expression
ballotlemodife  |-  ( C  e.  ( O  \  E )  <->  ( C  e.  O  /\  E. i  e.  ( 1 ... ( M  +  N )
) ( ( F `
 C ) `  i )  <_  0
) )
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O, c    F, c, i    C, i
Allowed substitution hints:    C( x, c)    P( x, i, c)    E( x, i, c)    F( x)    M( x)    N( x)    O( x)

Proof of Theorem ballotlemodife
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 eldif 3426 . 2  |-  ( C  e.  ( O  \  E )  <->  ( C  e.  O  /\  -.  C  e.  E ) )
2 df-or 376 . . . 4  |-  ( ( ( C  e.  O  /\  -.  C  e.  O
)  \/  ( C  e.  O  /\  -.  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `
 C ) `  i ) ) )  <-> 
( -.  ( C  e.  O  /\  -.  C  e.  O )  ->  ( C  e.  O  /\  -.  A. i  e.  ( 1 ... ( M  +  N )
) 0  <  (
( F `  C
) `  i )
) ) )
3 pm3.24 898 . . . . 5  |-  -.  ( C  e.  O  /\  -.  C  e.  O
)
43a1bi 343 . . . 4  |-  ( ( C  e.  O  /\  -.  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  C ) `
 i ) )  <-> 
( -.  ( C  e.  O  /\  -.  C  e.  O )  ->  ( C  e.  O  /\  -.  A. i  e.  ( 1 ... ( M  +  N )
) 0  <  (
( F `  C
) `  i )
) ) )
52, 4bitr4i 260 . . 3  |-  ( ( ( C  e.  O  /\  -.  C  e.  O
)  \/  ( C  e.  O  /\  -.  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `
 C ) `  i ) ) )  <-> 
( C  e.  O  /\  -.  A. i  e.  ( 1 ... ( M  +  N )
) 0  <  (
( F `  C
) `  i )
) )
6 ballotth.m . . . . . . 7  |-  M  e.  NN
7 ballotth.n . . . . . . 7  |-  N  e.  NN
8 ballotth.o . . . . . . 7  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
9 ballotth.p . . . . . . 7  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
10 ballotth.f . . . . . . 7  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
11 ballotth.e . . . . . . 7  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
126, 7, 8, 9, 10, 11ballotleme 29378 . . . . . 6  |-  ( C  e.  E  <->  ( C  e.  O  /\  A. i  e.  ( 1 ... ( M  +  N )
) 0  <  (
( F `  C
) `  i )
) )
1312notbii 302 . . . . 5  |-  ( -.  C  e.  E  <->  -.  ( C  e.  O  /\  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `
 C ) `  i ) ) )
1413anbi2i 705 . . . 4  |-  ( ( C  e.  O  /\  -.  C  e.  E
)  <->  ( C  e.  O  /\  -.  ( C  e.  O  /\  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `
 C ) `  i ) ) ) )
15 ianor 495 . . . . 5  |-  ( -.  ( C  e.  O  /\  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  C ) `
 i ) )  <-> 
( -.  C  e.  O  \/  -.  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `
 C ) `  i ) ) )
1615anbi2i 705 . . . 4  |-  ( ( C  e.  O  /\  -.  ( C  e.  O  /\  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  C ) `
 i ) ) )  <->  ( C  e.  O  /\  ( -.  C  e.  O  \/  -.  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  C ) `
 i ) ) ) )
17 andi 883 . . . 4  |-  ( ( C  e.  O  /\  ( -.  C  e.  O  \/  -.  A. i  e.  ( 1 ... ( M  +  N )
) 0  <  (
( F `  C
) `  i )
) )  <->  ( ( C  e.  O  /\  -.  C  e.  O
)  \/  ( C  e.  O  /\  -.  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `
 C ) `  i ) ) ) )
1814, 16, 173bitri 279 . . 3  |-  ( ( C  e.  O  /\  -.  C  e.  E
)  <->  ( ( C  e.  O  /\  -.  C  e.  O )  \/  ( C  e.  O  /\  -.  A. i  e.  ( 1 ... ( M  +  N )
) 0  <  (
( F `  C
) `  i )
) ) )
19 0p1e1 10749 . . . . . . . . . . . . 13  |-  ( 0  +  1 )  =  1
2019oveq1i 6325 . . . . . . . . . . . 12  |-  ( ( 0  +  1 ) ... ( M  +  N ) )  =  ( 1 ... ( M  +  N )
)
21 0z 10977 . . . . . . . . . . . . 13  |-  0  e.  ZZ
22 fzp1ss 11876 . . . . . . . . . . . . 13  |-  ( 0  e.  ZZ  ->  (
( 0  +  1 ) ... ( M  +  N ) ) 
C_  ( 0 ... ( M  +  N
) ) )
2321, 22ax-mp 5 . . . . . . . . . . . 12  |-  ( ( 0  +  1 ) ... ( M  +  N ) )  C_  ( 0 ... ( M  +  N )
)
2420, 23eqsstr3i 3475 . . . . . . . . . . 11  |-  ( 1 ... ( M  +  N ) )  C_  ( 0 ... ( M  +  N )
)
2524a1i 11 . . . . . . . . . 10  |-  ( C  e.  O  ->  (
1 ... ( M  +  N ) )  C_  ( 0 ... ( M  +  N )
) )
2625sseld 3443 . . . . . . . . 9  |-  ( C  e.  O  ->  (
i  e.  ( 1 ... ( M  +  N ) )  -> 
i  e.  ( 0 ... ( M  +  N ) ) ) )
2726imdistani 701 . . . . . . . 8  |-  ( ( C  e.  O  /\  i  e.  ( 1 ... ( M  +  N ) ) )  ->  ( C  e.  O  /\  i  e.  ( 0 ... ( M  +  N )
) ) )
28 simpl 463 . . . . . . . . . . . 12  |-  ( ( C  e.  O  /\  j  e.  ( 0 ... ( M  +  N ) ) )  ->  C  e.  O
)
29 elfzelz 11829 . . . . . . . . . . . . 13  |-  ( j  e.  ( 0 ... ( M  +  N
) )  ->  j  e.  ZZ )
3029adantl 472 . . . . . . . . . . . 12  |-  ( ( C  e.  O  /\  j  e.  ( 0 ... ( M  +  N ) ) )  ->  j  e.  ZZ )
316, 7, 8, 9, 10, 28, 30ballotlemfelz 29372 . . . . . . . . . . 11  |-  ( ( C  e.  O  /\  j  e.  ( 0 ... ( M  +  N ) ) )  ->  ( ( F `
 C ) `  j )  e.  ZZ )
3231zred 11069 . . . . . . . . . 10  |-  ( ( C  e.  O  /\  j  e.  ( 0 ... ( M  +  N ) ) )  ->  ( ( F `
 C ) `  j )  e.  RR )
3332sbimi 1814 . . . . . . . . 9  |-  ( [ i  /  j ] ( C  e.  O  /\  j  e.  (
0 ... ( M  +  N ) ) )  ->  [ i  / 
j ] ( ( F `  C ) `
 j )  e.  RR )
34 sban 2239 . . . . . . . . . 10  |-  ( [ i  /  j ] ( C  e.  O  /\  j  e.  (
0 ... ( M  +  N ) ) )  <-> 
( [ i  / 
j ] C  e.  O  /\  [ i  /  j ] j  e.  ( 0 ... ( M  +  N
) ) ) )
35 nfv 1772 . . . . . . . . . . . 12  |-  F/ j  C  e.  O
3635sbf 2220 . . . . . . . . . . 11  |-  ( [ i  /  j ] C  e.  O  <->  C  e.  O )
37 clelsb3 2568 . . . . . . . . . . 11  |-  ( [ i  /  j ] j  e.  ( 0 ... ( M  +  N ) )  <->  i  e.  ( 0 ... ( M  +  N )
) )
3836, 37anbi12i 708 . . . . . . . . . 10  |-  ( ( [ i  /  j ] C  e.  O  /\  [ i  /  j ] j  e.  ( 0 ... ( M  +  N ) ) )  <->  ( C  e.  O  /\  i  e.  ( 0 ... ( M  +  N )
) ) )
3934, 38bitri 257 . . . . . . . . 9  |-  ( [ i  /  j ] ( C  e.  O  /\  j  e.  (
0 ... ( M  +  N ) ) )  <-> 
( C  e.  O  /\  i  e.  (
0 ... ( M  +  N ) ) ) )
40 nfv 1772 . . . . . . . . . 10  |-  F/ j ( ( F `  C ) `  i
)  e.  RR
41 fveq2 5888 . . . . . . . . . . 11  |-  ( j  =  i  ->  (
( F `  C
) `  j )  =  ( ( F `
 C ) `  i ) )
4241eleq1d 2524 . . . . . . . . . 10  |-  ( j  =  i  ->  (
( ( F `  C ) `  j
)  e.  RR  <->  ( ( F `  C ) `  i )  e.  RR ) )
4340, 42sbie 2248 . . . . . . . . 9  |-  ( [ i  /  j ] ( ( F `  C ) `  j
)  e.  RR  <->  ( ( F `  C ) `  i )  e.  RR )
4433, 39, 433imtr3i 273 . . . . . . . 8  |-  ( ( C  e.  O  /\  i  e.  ( 0 ... ( M  +  N ) ) )  ->  ( ( F `
 C ) `  i )  e.  RR )
4527, 44syl 17 . . . . . . 7  |-  ( ( C  e.  O  /\  i  e.  ( 1 ... ( M  +  N ) ) )  ->  ( ( F `
 C ) `  i )  e.  RR )
46 0red 9670 . . . . . . 7  |-  ( ( C  e.  O  /\  i  e.  ( 1 ... ( M  +  N ) ) )  ->  0  e.  RR )
4745, 46lenltd 9807 . . . . . 6  |-  ( ( C  e.  O  /\  i  e.  ( 1 ... ( M  +  N ) ) )  ->  ( ( ( F `  C ) `
 i )  <_ 
0  <->  -.  0  <  ( ( F `  C
) `  i )
) )
4847rexbidva 2910 . . . . 5  |-  ( C  e.  O  ->  ( E. i  e.  (
1 ... ( M  +  N ) ) ( ( F `  C
) `  i )  <_  0  <->  E. i  e.  ( 1 ... ( M  +  N ) )  -.  0  <  (
( F `  C
) `  i )
) )
49 rexnal 2848 . . . . 5  |-  ( E. i  e.  ( 1 ... ( M  +  N ) )  -.  0  <  ( ( F `  C ) `
 i )  <->  -.  A. i  e.  ( 1 ... ( M  +  N )
) 0  <  (
( F `  C
) `  i )
)
5048, 49syl6bb 269 . . . 4  |-  ( C  e.  O  ->  ( E. i  e.  (
1 ... ( M  +  N ) ) ( ( F `  C
) `  i )  <_  0  <->  -.  A. i  e.  ( 1 ... ( M  +  N )
) 0  <  (
( F `  C
) `  i )
) )
5150pm5.32i 647 . . 3  |-  ( ( C  e.  O  /\  E. i  e.  ( 1 ... ( M  +  N ) ) ( ( F `  C
) `  i )  <_  0 )  <->  ( C  e.  O  /\  -.  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `
 C ) `  i ) ) )
525, 18, 513bitr4i 285 . 2  |-  ( ( C  e.  O  /\  -.  C  e.  E
)  <->  ( C  e.  O  /\  E. i  e.  ( 1 ... ( M  +  N )
) ( ( F `
 C ) `  i )  <_  0
) )
531, 52bitri 257 1  |-  ( C  e.  ( O  \  E )  <->  ( C  e.  O  /\  E. i  e.  ( 1 ... ( M  +  N )
) ( ( F `
 C ) `  i )  <_  0
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 374    /\ wa 375    = wceq 1455   [wsb 1808    e. wcel 1898   A.wral 2749   E.wrex 2750   {crab 2753    \ cdif 3413    i^i cin 3415    C_ wss 3416   ~Pcpw 3963   class class class wbr 4416    |-> cmpt 4475   ` cfv 5601  (class class class)co 6315   RRcr 9564   0cc0 9565   1c1 9566    + caddc 9568    < clt 9701    <_ cle 9702    - cmin 9886    / cdiv 10297   NNcn 10637   ZZcz 10966   ...cfz 11813   #chash 12547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4529  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610  ax-cnex 9621  ax-resscn 9622  ax-1cn 9623  ax-icn 9624  ax-addcl 9625  ax-addrcl 9626  ax-mulcl 9627  ax-mulrcl 9628  ax-mulcom 9629  ax-addass 9630  ax-mulass 9631  ax-distr 9632  ax-i2m1 9633  ax-1ne0 9634  ax-1rid 9635  ax-rnegex 9636  ax-rrecex 9637  ax-cnre 9638  ax-pre-lttri 9639  ax-pre-lttrn 9640  ax-pre-ltadd 9641  ax-pre-mulgt0 9642
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-nel 2636  df-ral 2754  df-rex 2755  df-reu 2756  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-int 4249  df-iun 4294  df-br 4417  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6277  df-ov 6318  df-oprab 6319  df-mpt2 6320  df-om 6720  df-1st 6820  df-2nd 6821  df-wrecs 7054  df-recs 7116  df-rdg 7154  df-1o 7208  df-er 7389  df-en 7596  df-dom 7597  df-sdom 7598  df-fin 7599  df-card 8399  df-pnf 9703  df-mnf 9704  df-xr 9705  df-ltxr 9706  df-le 9707  df-sub 9888  df-neg 9889  df-nn 10638  df-n0 10899  df-z 10967  df-uz 11189  df-fz 11814  df-hash 12548
This theorem is referenced by:  ballotlem5  29381  ballotlemrc  29412  ballotlemrcOLD  29450
  Copyright terms: Public domain W3C validator