Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemodife Structured version   Unicode version

Theorem ballotlemodife 28268
Description: Elements of  ( O 
\  E ). (Contributed by Thierry Arnoux, 7-Dec-2016.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotth.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
ballotth.e  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
Assertion
Ref Expression
ballotlemodife  |-  ( C  e.  ( O  \  E )  <->  ( C  e.  O  /\  E. i  e.  ( 1 ... ( M  +  N )
) ( ( F `
 C ) `  i )  <_  0
) )
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O, c    F, c, i    C, i
Allowed substitution hints:    C( x, c)    P( x, i, c)    E( x, i, c)    F( x)    M( x)    N( x)    O( x)

Proof of Theorem ballotlemodife
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 eldif 3491 . 2  |-  ( C  e.  ( O  \  E )  <->  ( C  e.  O  /\  -.  C  e.  E ) )
2 df-or 370 . . . 4  |-  ( ( ( C  e.  O  /\  -.  C  e.  O
)  \/  ( C  e.  O  /\  -.  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `
 C ) `  i ) ) )  <-> 
( -.  ( C  e.  O  /\  -.  C  e.  O )  ->  ( C  e.  O  /\  -.  A. i  e.  ( 1 ... ( M  +  N )
) 0  <  (
( F `  C
) `  i )
) ) )
3 pm3.24 880 . . . . 5  |-  -.  ( C  e.  O  /\  -.  C  e.  O
)
43a1bi 337 . . . 4  |-  ( ( C  e.  O  /\  -.  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  C ) `
 i ) )  <-> 
( -.  ( C  e.  O  /\  -.  C  e.  O )  ->  ( C  e.  O  /\  -.  A. i  e.  ( 1 ... ( M  +  N )
) 0  <  (
( F `  C
) `  i )
) ) )
52, 4bitr4i 252 . . 3  |-  ( ( ( C  e.  O  /\  -.  C  e.  O
)  \/  ( C  e.  O  /\  -.  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `
 C ) `  i ) ) )  <-> 
( C  e.  O  /\  -.  A. i  e.  ( 1 ... ( M  +  N )
) 0  <  (
( F `  C
) `  i )
) )
6 ballotth.m . . . . . . 7  |-  M  e.  NN
7 ballotth.n . . . . . . 7  |-  N  e.  NN
8 ballotth.o . . . . . . 7  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
9 ballotth.p . . . . . . 7  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
10 ballotth.f . . . . . . 7  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
11 ballotth.e . . . . . . 7  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
126, 7, 8, 9, 10, 11ballotleme 28267 . . . . . 6  |-  ( C  e.  E  <->  ( C  e.  O  /\  A. i  e.  ( 1 ... ( M  +  N )
) 0  <  (
( F `  C
) `  i )
) )
1312notbii 296 . . . . 5  |-  ( -.  C  e.  E  <->  -.  ( C  e.  O  /\  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `
 C ) `  i ) ) )
1413anbi2i 694 . . . 4  |-  ( ( C  e.  O  /\  -.  C  e.  E
)  <->  ( C  e.  O  /\  -.  ( C  e.  O  /\  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `
 C ) `  i ) ) ) )
15 ianor 488 . . . . 5  |-  ( -.  ( C  e.  O  /\  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  C ) `
 i ) )  <-> 
( -.  C  e.  O  \/  -.  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `
 C ) `  i ) ) )
1615anbi2i 694 . . . 4  |-  ( ( C  e.  O  /\  -.  ( C  e.  O  /\  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  C ) `
 i ) ) )  <->  ( C  e.  O  /\  ( -.  C  e.  O  \/  -.  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  C ) `
 i ) ) ) )
17 andi 865 . . . 4  |-  ( ( C  e.  O  /\  ( -.  C  e.  O  \/  -.  A. i  e.  ( 1 ... ( M  +  N )
) 0  <  (
( F `  C
) `  i )
) )  <->  ( ( C  e.  O  /\  -.  C  e.  O
)  \/  ( C  e.  O  /\  -.  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `
 C ) `  i ) ) ) )
1814, 16, 173bitri 271 . . 3  |-  ( ( C  e.  O  /\  -.  C  e.  E
)  <->  ( ( C  e.  O  /\  -.  C  e.  O )  \/  ( C  e.  O  /\  -.  A. i  e.  ( 1 ... ( M  +  N )
) 0  <  (
( F `  C
) `  i )
) ) )
19 0p1e1 10659 . . . . . . . . . . . . 13  |-  ( 0  +  1 )  =  1
2019oveq1i 6305 . . . . . . . . . . . 12  |-  ( ( 0  +  1 ) ... ( M  +  N ) )  =  ( 1 ... ( M  +  N )
)
21 0z 10887 . . . . . . . . . . . . 13  |-  0  e.  ZZ
22 fzp1ss 11743 . . . . . . . . . . . . 13  |-  ( 0  e.  ZZ  ->  (
( 0  +  1 ) ... ( M  +  N ) ) 
C_  ( 0 ... ( M  +  N
) ) )
2321, 22ax-mp 5 . . . . . . . . . . . 12  |-  ( ( 0  +  1 ) ... ( M  +  N ) )  C_  ( 0 ... ( M  +  N )
)
2420, 23eqsstr3i 3540 . . . . . . . . . . 11  |-  ( 1 ... ( M  +  N ) )  C_  ( 0 ... ( M  +  N )
)
2524a1i 11 . . . . . . . . . 10  |-  ( C  e.  O  ->  (
1 ... ( M  +  N ) )  C_  ( 0 ... ( M  +  N )
) )
2625sseld 3508 . . . . . . . . 9  |-  ( C  e.  O  ->  (
i  e.  ( 1 ... ( M  +  N ) )  -> 
i  e.  ( 0 ... ( M  +  N ) ) ) )
2726imdistani 690 . . . . . . . 8  |-  ( ( C  e.  O  /\  i  e.  ( 1 ... ( M  +  N ) ) )  ->  ( C  e.  O  /\  i  e.  ( 0 ... ( M  +  N )
) ) )
28 simpl 457 . . . . . . . . . . . 12  |-  ( ( C  e.  O  /\  j  e.  ( 0 ... ( M  +  N ) ) )  ->  C  e.  O
)
29 elfzelz 11700 . . . . . . . . . . . . 13  |-  ( j  e.  ( 0 ... ( M  +  N
) )  ->  j  e.  ZZ )
3029adantl 466 . . . . . . . . . . . 12  |-  ( ( C  e.  O  /\  j  e.  ( 0 ... ( M  +  N ) ) )  ->  j  e.  ZZ )
316, 7, 8, 9, 10, 28, 30ballotlemfelz 28261 . . . . . . . . . . 11  |-  ( ( C  e.  O  /\  j  e.  ( 0 ... ( M  +  N ) ) )  ->  ( ( F `
 C ) `  j )  e.  ZZ )
3231zred 10978 . . . . . . . . . 10  |-  ( ( C  e.  O  /\  j  e.  ( 0 ... ( M  +  N ) ) )  ->  ( ( F `
 C ) `  j )  e.  RR )
3332sbimi 1717 . . . . . . . . 9  |-  ( [ i  /  j ] ( C  e.  O  /\  j  e.  (
0 ... ( M  +  N ) ) )  ->  [ i  / 
j ] ( ( F `  C ) `
 j )  e.  RR )
34 sban 2114 . . . . . . . . . 10  |-  ( [ i  /  j ] ( C  e.  O  /\  j  e.  (
0 ... ( M  +  N ) ) )  <-> 
( [ i  / 
j ] C  e.  O  /\  [ i  /  j ] j  e.  ( 0 ... ( M  +  N
) ) ) )
35 nfv 1683 . . . . . . . . . . . 12  |-  F/ j  C  e.  O
3635sbf 2094 . . . . . . . . . . 11  |-  ( [ i  /  j ] C  e.  O  <->  C  e.  O )
37 clelsb3 2588 . . . . . . . . . . 11  |-  ( [ i  /  j ] j  e.  ( 0 ... ( M  +  N ) )  <->  i  e.  ( 0 ... ( M  +  N )
) )
3836, 37anbi12i 697 . . . . . . . . . 10  |-  ( ( [ i  /  j ] C  e.  O  /\  [ i  /  j ] j  e.  ( 0 ... ( M  +  N ) ) )  <->  ( C  e.  O  /\  i  e.  ( 0 ... ( M  +  N )
) ) )
3934, 38bitri 249 . . . . . . . . 9  |-  ( [ i  /  j ] ( C  e.  O  /\  j  e.  (
0 ... ( M  +  N ) ) )  <-> 
( C  e.  O  /\  i  e.  (
0 ... ( M  +  N ) ) ) )
40 nfv 1683 . . . . . . . . . 10  |-  F/ j ( ( F `  C ) `  i
)  e.  RR
41 fveq2 5872 . . . . . . . . . . 11  |-  ( j  =  i  ->  (
( F `  C
) `  j )  =  ( ( F `
 C ) `  i ) )
4241eleq1d 2536 . . . . . . . . . 10  |-  ( j  =  i  ->  (
( ( F `  C ) `  j
)  e.  RR  <->  ( ( F `  C ) `  i )  e.  RR ) )
4340, 42sbie 2123 . . . . . . . . 9  |-  ( [ i  /  j ] ( ( F `  C ) `  j
)  e.  RR  <->  ( ( F `  C ) `  i )  e.  RR )
4433, 39, 433imtr3i 265 . . . . . . . 8  |-  ( ( C  e.  O  /\  i  e.  ( 0 ... ( M  +  N ) ) )  ->  ( ( F `
 C ) `  i )  e.  RR )
4527, 44syl 16 . . . . . . 7  |-  ( ( C  e.  O  /\  i  e.  ( 1 ... ( M  +  N ) ) )  ->  ( ( F `
 C ) `  i )  e.  RR )
46 0red 9609 . . . . . . 7  |-  ( ( C  e.  O  /\  i  e.  ( 1 ... ( M  +  N ) ) )  ->  0  e.  RR )
4745, 46lenltd 9742 . . . . . 6  |-  ( ( C  e.  O  /\  i  e.  ( 1 ... ( M  +  N ) ) )  ->  ( ( ( F `  C ) `
 i )  <_ 
0  <->  -.  0  <  ( ( F `  C
) `  i )
) )
4847rexbidva 2975 . . . . 5  |-  ( C  e.  O  ->  ( E. i  e.  (
1 ... ( M  +  N ) ) ( ( F `  C
) `  i )  <_  0  <->  E. i  e.  ( 1 ... ( M  +  N ) )  -.  0  <  (
( F `  C
) `  i )
) )
49 rexnal 2915 . . . . 5  |-  ( E. i  e.  ( 1 ... ( M  +  N ) )  -.  0  <  ( ( F `  C ) `
 i )  <->  -.  A. i  e.  ( 1 ... ( M  +  N )
) 0  <  (
( F `  C
) `  i )
)
5048, 49syl6bb 261 . . . 4  |-  ( C  e.  O  ->  ( E. i  e.  (
1 ... ( M  +  N ) ) ( ( F `  C
) `  i )  <_  0  <->  -.  A. i  e.  ( 1 ... ( M  +  N )
) 0  <  (
( F `  C
) `  i )
) )
5150pm5.32i 637 . . 3  |-  ( ( C  e.  O  /\  E. i  e.  ( 1 ... ( M  +  N ) ) ( ( F `  C
) `  i )  <_  0 )  <->  ( C  e.  O  /\  -.  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `
 C ) `  i ) ) )
525, 18, 513bitr4i 277 . 2  |-  ( ( C  e.  O  /\  -.  C  e.  E
)  <->  ( C  e.  O  /\  E. i  e.  ( 1 ... ( M  +  N )
) ( ( F `
 C ) `  i )  <_  0
) )
531, 52bitri 249 1  |-  ( C  e.  ( O  \  E )  <->  ( C  e.  O  /\  E. i  e.  ( 1 ... ( M  +  N )
) ( ( F `
 C ) `  i )  <_  0
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379   [wsb 1711    e. wcel 1767   A.wral 2817   E.wrex 2818   {crab 2821    \ cdif 3478    i^i cin 3480    C_ wss 3481   ~Pcpw 4016   class class class wbr 4453    |-> cmpt 4511   ` cfv 5594  (class class class)co 6295   RRcr 9503   0cc0 9504   1c1 9505    + caddc 9507    < clt 9640    <_ cle 9641    - cmin 9817    / cdiv 10218   NNcn 10548   ZZcz 10876   ...cfz 11684   #chash 12385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-card 8332  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-n0 10808  df-z 10877  df-uz 11095  df-fz 11685  df-hash 12386
This theorem is referenced by:  ballotlem5  28270  ballotlemrc  28301
  Copyright terms: Public domain W3C validator