Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemimin Structured version   Unicode version

Theorem ballotlemimin 28641
Description:  ( I `  C ) is the first tie. (Contributed by Thierry Arnoux, 1-Dec-2016.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotth.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
ballotth.e  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
ballotth.mgtn  |-  N  < 
M
ballotth.i  |-  I  =  ( c  e.  ( O  \  E ) 
|->  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  c
) `  k )  =  0 } ,  RR ,  `'  <  ) )
Assertion
Ref Expression
ballotlemimin  |-  ( C  e.  ( O  \  E )  ->  -.  E. k  e.  ( 1 ... ( ( I `
 C )  - 
1 ) ) ( ( F `  C
) `  k )  =  0 )
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O    k, M    k, N    k, O    i, c, F, k    C, i, k    i, E, k    C, k    k, I   
k, c, E    i, I
Allowed substitution hints:    C( x, c)    P( x, i, k, c)    E( x)    F( x)    I( x, c)    M( x)    N( x)    O( x)

Proof of Theorem ballotlemimin
Dummy variables  y 
z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfzle2 11715 . . . . . 6  |-  ( k  e.  ( 1 ... ( ( I `  C )  -  1 ) )  ->  k  <_  ( ( I `  C )  -  1 ) )
21adantl 466 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  k  e.  ( 1 ... ( ( I `
 C )  - 
1 ) ) )  ->  k  <_  (
( I `  C
)  -  1 ) )
3 elfzelz 11713 . . . . . 6  |-  ( k  e.  ( 1 ... ( ( I `  C )  -  1 ) )  ->  k  e.  ZZ )
4 ballotth.m . . . . . . . . . 10  |-  M  e.  NN
5 ballotth.n . . . . . . . . . 10  |-  N  e.  NN
6 ballotth.o . . . . . . . . . 10  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
7 ballotth.p . . . . . . . . . 10  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
8 ballotth.f . . . . . . . . . 10  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
9 ballotth.e . . . . . . . . . 10  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
10 ballotth.mgtn . . . . . . . . . 10  |-  N  < 
M
11 ballotth.i . . . . . . . . . 10  |-  I  =  ( c  e.  ( O  \  E ) 
|->  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  c
) `  k )  =  0 } ,  RR ,  `'  <  ) )
124, 5, 6, 7, 8, 9, 10, 11ballotlemiex 28637 . . . . . . . . 9  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  e.  ( 1 ... ( M  +  N ) )  /\  ( ( F `  C ) `  (
I `  C )
)  =  0 ) )
1312simpld 459 . . . . . . . 8  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  e.  ( 1 ... ( M  +  N )
) )
14 elfznn 11739 . . . . . . . 8  |-  ( ( I `  C )  e.  ( 1 ... ( M  +  N
) )  ->  (
I `  C )  e.  NN )
1513, 14syl 16 . . . . . . 7  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  e.  NN )
1615nnzd 10989 . . . . . 6  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  e.  ZZ )
17 zltlem1 10937 . . . . . 6  |-  ( ( k  e.  ZZ  /\  ( I `  C
)  e.  ZZ )  ->  ( k  < 
( I `  C
)  <->  k  <_  (
( I `  C
)  -  1 ) ) )
183, 16, 17syl2anr 478 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  k  e.  ( 1 ... ( ( I `
 C )  - 
1 ) ) )  ->  ( k  < 
( I `  C
)  <->  k  <_  (
( I `  C
)  -  1 ) ) )
192, 18mpbird 232 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  k  e.  ( 1 ... ( ( I `
 C )  - 
1 ) ) )  ->  k  <  (
I `  C )
)
2019adantr 465 . . 3  |-  ( ( ( C  e.  ( O  \  E )  /\  k  e.  ( 1 ... ( ( I `  C )  -  1 ) ) )  /\  ( ( F `  C ) `
 k )  =  0 )  ->  k  <  ( I `  C
) )
21 1zzd 10916 . . . . . . . . . . . . 13  |-  ( C  e.  ( O  \  E )  ->  1  e.  ZZ )
2216, 21zsubcld 10995 . . . . . . . . . . . 12  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  -  1 )  e.  ZZ )
2322zred 10990 . . . . . . . . . . 11  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  -  1 )  e.  RR )
24 nnaddcl 10578 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  +  N
)  e.  NN )
254, 5, 24mp2an 672 . . . . . . . . . . . . 13  |-  ( M  +  N )  e.  NN
2625a1i 11 . . . . . . . . . . . 12  |-  ( C  e.  ( O  \  E )  ->  ( M  +  N )  e.  NN )
2726nnred 10571 . . . . . . . . . . 11  |-  ( C  e.  ( O  \  E )  ->  ( M  +  N )  e.  RR )
28 elfzle2 11715 . . . . . . . . . . . . 13  |-  ( ( I `  C )  e.  ( 1 ... ( M  +  N
) )  ->  (
I `  C )  <_  ( M  +  N
) )
2913, 28syl 16 . . . . . . . . . . . 12  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  <_  ( M  +  N
) )
3026nnzd 10989 . . . . . . . . . . . . 13  |-  ( C  e.  ( O  \  E )  ->  ( M  +  N )  e.  ZZ )
31 zlem1lt 10936 . . . . . . . . . . . . 13  |-  ( ( ( I `  C
)  e.  ZZ  /\  ( M  +  N
)  e.  ZZ )  ->  ( ( I `
 C )  <_ 
( M  +  N
)  <->  ( ( I `
 C )  - 
1 )  <  ( M  +  N )
) )
3216, 30, 31syl2anc 661 . . . . . . . . . . . 12  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  <_  ( M  +  N )  <->  ( (
I `  C )  -  1 )  < 
( M  +  N
) ) )
3329, 32mpbid 210 . . . . . . . . . . 11  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  -  1 )  <  ( M  +  N ) )
3423, 27, 33ltled 9750 . . . . . . . . . 10  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  -  1 )  <_  ( M  +  N ) )
35 eluz 11119 . . . . . . . . . . 11  |-  ( ( ( ( I `  C )  -  1 )  e.  ZZ  /\  ( M  +  N
)  e.  ZZ )  ->  ( ( M  +  N )  e.  ( ZZ>= `  ( (
I `  C )  -  1 ) )  <-> 
( ( I `  C )  -  1 )  <_  ( M  +  N ) ) )
3622, 30, 35syl2anc 661 . . . . . . . . . 10  |-  ( C  e.  ( O  \  E )  ->  (
( M  +  N
)  e.  ( ZZ>= `  ( ( I `  C )  -  1 ) )  <->  ( (
I `  C )  -  1 )  <_ 
( M  +  N
) ) )
3734, 36mpbird 232 . . . . . . . . 9  |-  ( C  e.  ( O  \  E )  ->  ( M  +  N )  e.  ( ZZ>= `  ( (
I `  C )  -  1 ) ) )
38 fzss2 11749 . . . . . . . . 9  |-  ( ( M  +  N )  e.  ( ZZ>= `  (
( I `  C
)  -  1 ) )  ->  ( 1 ... ( ( I `
 C )  - 
1 ) )  C_  ( 1 ... ( M  +  N )
) )
3937, 38syl 16 . . . . . . . 8  |-  ( C  e.  ( O  \  E )  ->  (
1 ... ( ( I `
 C )  - 
1 ) )  C_  ( 1 ... ( M  +  N )
) )
4039sseld 3498 . . . . . . 7  |-  ( C  e.  ( O  \  E )  ->  (
k  e.  ( 1 ... ( ( I `
 C )  - 
1 ) )  -> 
k  e.  ( 1 ... ( M  +  N ) ) ) )
41 rabid 3034 . . . . . . . 8  |-  ( k  e.  { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  C ) `
 k )  =  0 }  <->  ( k  e.  ( 1 ... ( M  +  N )
)  /\  ( ( F `  C ) `  k )  =  0 ) )
424, 5, 6, 7, 8, 9, 10, 11ballotlemsup 28640 . . . . . . . . . 10  |-  ( C  e.  ( O  \  E )  ->  E. z  e.  RR  ( A. w  e.  { k  e.  ( 1 ... ( M  +  N ) )  |  ( ( F `
 C ) `  k )  =  0 }  -.  z `'  <  w  /\  A. w  e.  RR  (
w `'  <  z  ->  E. y  e.  {
k  e.  ( 1 ... ( M  +  N ) )  |  ( ( F `  C ) `  k
)  =  0 } w `'  <  y
) ) )
43 gtso 9683 . . . . . . . . . . . 12  |-  `'  <  Or  RR
4443a1i 11 . . . . . . . . . . 11  |-  ( E. z  e.  RR  ( A. w  e.  { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  C
) `  k )  =  0 }  -.  z `'  <  w  /\  A. w  e.  RR  (
w `'  <  z  ->  E. y  e.  {
k  e.  ( 1 ... ( M  +  N ) )  |  ( ( F `  C ) `  k
)  =  0 } w `'  <  y
) )  ->  `'  <  Or  RR )
45 id 22 . . . . . . . . . . 11  |-  ( E. z  e.  RR  ( A. w  e.  { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  C
) `  k )  =  0 }  -.  z `'  <  w  /\  A. w  e.  RR  (
w `'  <  z  ->  E. y  e.  {
k  e.  ( 1 ... ( M  +  N ) )  |  ( ( F `  C ) `  k
)  =  0 } w `'  <  y
) )  ->  E. z  e.  RR  ( A. w  e.  { k  e.  ( 1 ... ( M  +  N ) )  |  ( ( F `
 C ) `  k )  =  0 }  -.  z `'  <  w  /\  A. w  e.  RR  (
w `'  <  z  ->  E. y  e.  {
k  e.  ( 1 ... ( M  +  N ) )  |  ( ( F `  C ) `  k
)  =  0 } w `'  <  y
) ) )
4644, 45supub 7936 . . . . . . . . . 10  |-  ( E. z  e.  RR  ( A. w  e.  { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  C
) `  k )  =  0 }  -.  z `'  <  w  /\  A. w  e.  RR  (
w `'  <  z  ->  E. y  e.  {
k  e.  ( 1 ... ( M  +  N ) )  |  ( ( F `  C ) `  k
)  =  0 } w `'  <  y
) )  ->  (
k  e.  { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  C
) `  k )  =  0 }  ->  -. 
sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  C
) `  k )  =  0 } ,  RR ,  `'  <  ) `'  <  k ) )
4742, 46syl 16 . . . . . . . . 9  |-  ( C  e.  ( O  \  E )  ->  (
k  e.  { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  C
) `  k )  =  0 }  ->  -. 
sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  C
) `  k )  =  0 } ,  RR ,  `'  <  ) `'  <  k ) )
484, 5, 6, 7, 8, 9, 10, 11ballotlemi 28636 . . . . . . . . . . 11  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  =  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  C
) `  k )  =  0 } ,  RR ,  `'  <  ) )
4948breq1d 4466 . . . . . . . . . 10  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
) `'  <  k  <->  sup ( { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  C ) `
 k )  =  0 } ,  RR ,  `'  <  ) `'  <  k ) )
5049notbid 294 . . . . . . . . 9  |-  ( C  e.  ( O  \  E )  ->  ( -.  ( I `  C
) `'  <  k  <->  -. 
sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  C
) `  k )  =  0 } ,  RR ,  `'  <  ) `'  <  k ) )
5147, 50sylibrd 234 . . . . . . . 8  |-  ( C  e.  ( O  \  E )  ->  (
k  e.  { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  C
) `  k )  =  0 }  ->  -.  ( I `  C
) `'  <  k
) )
5241, 51syl5bir 218 . . . . . . 7  |-  ( C  e.  ( O  \  E )  ->  (
( k  e.  ( 1 ... ( M  +  N ) )  /\  ( ( F `
 C ) `  k )  =  0 )  ->  -.  (
I `  C ) `'  <  k ) )
5340, 52syland 481 . . . . . 6  |-  ( C  e.  ( O  \  E )  ->  (
( k  e.  ( 1 ... ( ( I `  C )  -  1 ) )  /\  ( ( F `
 C ) `  k )  =  0 )  ->  -.  (
I `  C ) `'  <  k ) )
5453imp 429 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  ( k  e.  ( 1 ... ( ( I `  C )  -  1 ) )  /\  ( ( F `
 C ) `  k )  =  0 ) )  ->  -.  ( I `  C
) `'  <  k
)
55 ltrel 9666 . . . . . 6  |-  Rel  <
5655relbrcnv 5387 . . . . 5  |-  ( ( I `  C ) `'  <  k  <->  k  <  ( I `  C ) )
5754, 56sylnib 304 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  ( k  e.  ( 1 ... ( ( I `  C )  -  1 ) )  /\  ( ( F `
 C ) `  k )  =  0 ) )  ->  -.  k  <  ( I `  C ) )
5857anassrs 648 . . 3  |-  ( ( ( C  e.  ( O  \  E )  /\  k  e.  ( 1 ... ( ( I `  C )  -  1 ) ) )  /\  ( ( F `  C ) `
 k )  =  0 )  ->  -.  k  <  ( I `  C ) )
5920, 58pm2.65da 576 . 2  |-  ( ( C  e.  ( O 
\  E )  /\  k  e.  ( 1 ... ( ( I `
 C )  - 
1 ) ) )  ->  -.  ( ( F `  C ) `  k )  =  0 )
6059nrexdv 2913 1  |-  ( C  e.  ( O  \  E )  ->  -.  E. k  e.  ( 1 ... ( ( I `
 C )  - 
1 ) ) ( ( F `  C
) `  k )  =  0 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   E.wrex 2808   {crab 2811    \ cdif 3468    i^i cin 3470    C_ wss 3471   ~Pcpw 4015   class class class wbr 4456    |-> cmpt 4515    Or wor 4808   `'ccnv 5007   ` cfv 5594  (class class class)co 6296   supcsup 7918   RRcr 9508   0cc0 9509   1c1 9510    + caddc 9512    < clt 9645    <_ cle 9646    - cmin 9824    / cdiv 10227   NNcn 10556   ZZcz 10885   ZZ>=cuz 11106   ...cfz 11697   #chash 12408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-card 8337  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-hash 12409
This theorem is referenced by:  ballotlemic  28642  ballotlem1c  28643
  Copyright terms: Public domain W3C validator