Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemi1 Structured version   Unicode version

Theorem ballotlemi1 28109
Description: The first tie cannot be reached at the first pick. (Contributed by Thierry Arnoux, 12-Mar-2017.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotth.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
ballotth.e  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
ballotth.mgtn  |-  N  < 
M
ballotth.i  |-  I  =  ( c  e.  ( O  \  E ) 
|->  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  c
) `  k )  =  0 } ,  RR ,  `'  <  ) )
Assertion
Ref Expression
ballotlemi1  |-  ( ( C  e.  ( O 
\  E )  /\  -.  1  e.  C
)  ->  ( I `  C )  =/=  1
)
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O    k, M    k, N    k, O    i, c, F, k    C, i, k    i, E, k    C, k    k, I   
k, c, E    i, I
Allowed substitution hints:    C( x, c)    P( x, i, k, c)    E( x)    F( x)    I( x, c)    M( x)    N( x)    O( x)

Proof of Theorem ballotlemi1
StepHypRef Expression
1 0re 9596 . . . . . . 7  |-  0  e.  RR
2 1re 9595 . . . . . . 7  |-  1  e.  RR
31, 2resubcli 9881 . . . . . 6  |-  ( 0  -  1 )  e.  RR
4 0lt1 10075 . . . . . . 7  |-  0  <  1
5 ltsub23 10032 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  0  e.  RR )  ->  (
( 0  -  1 )  <  0  <->  (
0  -  0 )  <  1 ) )
61, 2, 1, 5mp3an 1324 . . . . . . . 8  |-  ( ( 0  -  1 )  <  0  <->  ( 0  -  0 )  <  1 )
7 0m0e0 10645 . . . . . . . . 9  |-  ( 0  -  0 )  =  0
87breq1i 4454 . . . . . . . 8  |-  ( ( 0  -  0 )  <  1  <->  0  <  1 )
96, 8bitr2i 250 . . . . . . 7  |-  ( 0  <  1  <->  ( 0  -  1 )  <  0 )
104, 9mpbi 208 . . . . . 6  |-  ( 0  -  1 )  <  0
113, 10gtneii 9696 . . . . 5  |-  0  =/=  ( 0  -  1 )
12 eqcom 2476 . . . . . 6  |-  ( 0  =  ( 0  -  1 )  <->  ( 0  -  1 )  =  0 )
1312necon3abii 2727 . . . . 5  |-  ( 0  =/=  ( 0  -  1 )  <->  -.  (
0  -  1 )  =  0 )
1411, 13mpbi 208 . . . 4  |-  -.  (
0  -  1 )  =  0
15 ballotth.m . . . . . . . . 9  |-  M  e.  NN
16 ballotth.n . . . . . . . . 9  |-  N  e.  NN
17 ballotth.o . . . . . . . . 9  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
18 ballotth.p . . . . . . . . 9  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
19 ballotth.f . . . . . . . . 9  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
20 eldifi 3626 . . . . . . . . 9  |-  ( C  e.  ( O  \  E )  ->  C  e.  O )
21 1nn 10547 . . . . . . . . . 10  |-  1  e.  NN
2221a1i 11 . . . . . . . . 9  |-  ( C  e.  ( O  \  E )  ->  1  e.  NN )
2315, 16, 17, 18, 19, 20, 22ballotlemfp1 28098 . . . . . . . 8  |-  ( C  e.  ( O  \  E )  ->  (
( -.  1  e.  C  ->  ( ( F `  C ) `  1 )  =  ( ( ( F `
 C ) `  ( 1  -  1 ) )  -  1 ) )  /\  (
1  e.  C  -> 
( ( F `  C ) `  1
)  =  ( ( ( F `  C
) `  ( 1  -  1 ) )  +  1 ) ) ) )
2423simpld 459 . . . . . . 7  |-  ( C  e.  ( O  \  E )  ->  ( -.  1  e.  C  ->  ( ( F `  C ) `  1
)  =  ( ( ( F `  C
) `  ( 1  -  1 ) )  -  1 ) ) )
2524imp 429 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  -.  1  e.  C
)  ->  ( ( F `  C ) `  1 )  =  ( ( ( F `
 C ) `  ( 1  -  1 ) )  -  1 ) )
26 1m1e0 10604 . . . . . . . . 9  |-  ( 1  -  1 )  =  0
2726fveq2i 5869 . . . . . . . 8  |-  ( ( F `  C ) `
 ( 1  -  1 ) )  =  ( ( F `  C ) `  0
)
2827oveq1i 6294 . . . . . . 7  |-  ( ( ( F `  C
) `  ( 1  -  1 ) )  -  1 )  =  ( ( ( F `
 C ) ` 
0 )  -  1 )
2928a1i 11 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  -.  1  e.  C
)  ->  ( (
( F `  C
) `  ( 1  -  1 ) )  -  1 )  =  ( ( ( F `
 C ) ` 
0 )  -  1 ) )
3015, 16, 17, 18, 19ballotlemfval0 28102 . . . . . . . . 9  |-  ( C  e.  O  ->  (
( F `  C
) `  0 )  =  0 )
3120, 30syl 16 . . . . . . . 8  |-  ( C  e.  ( O  \  E )  ->  (
( F `  C
) `  0 )  =  0 )
3231adantr 465 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  -.  1  e.  C
)  ->  ( ( F `  C ) `  0 )  =  0 )
3332oveq1d 6299 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  -.  1  e.  C
)  ->  ( (
( F `  C
) `  0 )  -  1 )  =  ( 0  -  1 ) )
3425, 29, 333eqtrrd 2513 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  -.  1  e.  C
)  ->  ( 0  -  1 )  =  ( ( F `  C ) `  1
) )
3534eqeq1d 2469 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  -.  1  e.  C
)  ->  ( (
0  -  1 )  =  0  <->  ( ( F `  C ) `  1 )  =  0 ) )
3614, 35mtbii 302 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  -.  1  e.  C
)  ->  -.  (
( F `  C
) `  1 )  =  0 )
37 ballotth.e . . . . . . 7  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
38 ballotth.mgtn . . . . . . 7  |-  N  < 
M
39 ballotth.i . . . . . . 7  |-  I  =  ( c  e.  ( O  \  E ) 
|->  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  c
) `  k )  =  0 } ,  RR ,  `'  <  ) )
4015, 16, 17, 18, 19, 37, 38, 39ballotlemiex 28108 . . . . . 6  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  e.  ( 1 ... ( M  +  N ) )  /\  ( ( F `  C ) `  (
I `  C )
)  =  0 ) )
4140simprd 463 . . . . 5  |-  ( C  e.  ( O  \  E )  ->  (
( F `  C
) `  ( I `  C ) )  =  0 )
4241ad2antrr 725 . . . 4  |-  ( ( ( C  e.  ( O  \  E )  /\  -.  1  e.  C )  /\  (
I `  C )  =  1 )  -> 
( ( F `  C ) `  (
I `  C )
)  =  0 )
43 fveq2 5866 . . . . . 6  |-  ( ( I `  C )  =  1  ->  (
( F `  C
) `  ( I `  C ) )  =  ( ( F `  C ) `  1
) )
4443eqeq1d 2469 . . . . 5  |-  ( ( I `  C )  =  1  ->  (
( ( F `  C ) `  (
I `  C )
)  =  0  <->  (
( F `  C
) `  1 )  =  0 ) )
4544adantl 466 . . . 4  |-  ( ( ( C  e.  ( O  \  E )  /\  -.  1  e.  C )  /\  (
I `  C )  =  1 )  -> 
( ( ( F `
 C ) `  ( I `  C
) )  =  0  <-> 
( ( F `  C ) `  1
)  =  0 ) )
4642, 45mpbid 210 . . 3  |-  ( ( ( C  e.  ( O  \  E )  /\  -.  1  e.  C )  /\  (
I `  C )  =  1 )  -> 
( ( F `  C ) `  1
)  =  0 )
4736, 46mtand 659 . 2  |-  ( ( C  e.  ( O 
\  E )  /\  -.  1  e.  C
)  ->  -.  (
I `  C )  =  1 )
4847neqned 2670 1  |-  ( ( C  e.  ( O 
\  E )  /\  -.  1  e.  C
)  ->  ( I `  C )  =/=  1
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   {crab 2818    \ cdif 3473    i^i cin 3475   ~Pcpw 4010   class class class wbr 4447    |-> cmpt 4505   `'ccnv 4998   ` cfv 5588  (class class class)co 6284   supcsup 7900   RRcr 9491   0cc0 9492   1c1 9493    + caddc 9495    < clt 9628    - cmin 9805    / cdiv 10206   NNcn 10536   ZZcz 10864   ...cfz 11672   #chash 12373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-sup 7901  df-card 8320  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-nn 10537  df-2 10594  df-n0 10796  df-z 10865  df-uz 11083  df-fz 11673  df-hash 12374
This theorem is referenced by:  ballotlemic  28113
  Copyright terms: Public domain W3C validator