Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemgun Structured version   Unicode version

Theorem ballotlemgun 26821
Description: A property of the defined  .^ operator (Contributed by Thierry Arnoux, 26-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotth.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
ballotth.e  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
ballotth.mgtn  |-  N  < 
M
ballotth.i  |-  I  =  ( c  e.  ( O  \  E ) 
|->  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  c
) `  k )  =  0 } ,  RR ,  `'  <  ) )
ballotth.s  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
ballotth.r  |-  R  =  ( c  e.  ( O  \  E ) 
|->  ( ( S `  c ) " c
) )
ballotlemg  |-  .^  =  ( u  e.  Fin ,  v  e.  Fin  |->  ( ( # `  (
v  i^i  u )
)  -  ( # `  ( v  \  u
) ) ) )
ballotlemgun.1  |-  ( ph  ->  U  e.  Fin )
ballotlemgun.2  |-  ( ph  ->  V  e.  Fin )
ballotlemgun.3  |-  ( ph  ->  W  e.  Fin )
ballotlemgun.4  |-  ( ph  ->  ( V  i^i  W
)  =  (/) )
Assertion
Ref Expression
ballotlemgun  |-  ( ph  ->  ( U  .^  ( V  u.  W )
)  =  ( ( U  .^  V )  +  ( U  .^  W ) ) )
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O    k, M    k, N    k, O    i, c, F, k   
i, E, k    k, I, c    E, c    i, I, c    S, k, i, c    R, i    v, u, I    u, R, v   
u, S, v    u, U, v    u, V, v   
u, W, v
Allowed substitution hints:    ph( x, v, u, i, k, c)    P( x, v, u, i, k, c)    R( x, k, c)    S( x)    U( x, i, k, c)    E( x, v, u)    .^ ( x, v, u, i, k, c)    F( x, v, u)    I( x)    M( x, v, u)    N( x, v, u)    O( x, v, u)    V( x, i, k, c)    W( x, i, k, c)

Proof of Theorem ballotlemgun
StepHypRef Expression
1 indir 3595 . . . . . 6  |-  ( ( V  u.  W )  i^i  U )  =  ( ( V  i^i  U )  u.  ( W  i^i  U ) )
21fveq2i 5691 . . . . 5  |-  ( # `  ( ( V  u.  W )  i^i  U
) )  =  (
# `  ( ( V  i^i  U )  u.  ( W  i^i  U
) ) )
3 ballotlemgun.2 . . . . . . 7  |-  ( ph  ->  V  e.  Fin )
4 infi 7532 . . . . . . 7  |-  ( V  e.  Fin  ->  ( V  i^i  U )  e. 
Fin )
53, 4syl 16 . . . . . 6  |-  ( ph  ->  ( V  i^i  U
)  e.  Fin )
6 ballotlemgun.3 . . . . . . 7  |-  ( ph  ->  W  e.  Fin )
7 infi 7532 . . . . . . 7  |-  ( W  e.  Fin  ->  ( W  i^i  U )  e. 
Fin )
86, 7syl 16 . . . . . 6  |-  ( ph  ->  ( W  i^i  U
)  e.  Fin )
9 ballotlemgun.4 . . . . . . . 8  |-  ( ph  ->  ( V  i^i  W
)  =  (/) )
109ineq1d 3548 . . . . . . 7  |-  ( ph  ->  ( ( V  i^i  W )  i^i  U )  =  ( (/)  i^i  U
) )
11 inindir 3565 . . . . . . 7  |-  ( ( V  i^i  W )  i^i  U )  =  ( ( V  i^i  U )  i^i  ( W  i^i  U ) )
12 incom 3540 . . . . . . . 8  |-  ( U  i^i  (/) )  =  (
(/)  i^i  U )
13 in0 3660 . . . . . . . 8  |-  ( U  i^i  (/) )  =  (/)
1412, 13eqtr3i 2463 . . . . . . 7  |-  ( (/)  i^i 
U )  =  (/)
1510, 11, 143eqtr3g 2496 . . . . . 6  |-  ( ph  ->  ( ( V  i^i  U )  i^i  ( W  i^i  U ) )  =  (/) )
16 hashun 12141 . . . . . 6  |-  ( ( ( V  i^i  U
)  e.  Fin  /\  ( W  i^i  U )  e.  Fin  /\  (
( V  i^i  U
)  i^i  ( W  i^i  U ) )  =  (/) )  ->  ( # `  ( ( V  i^i  U )  u.  ( W  i^i  U ) ) )  =  ( (
# `  ( V  i^i  U ) )  +  ( # `  ( W  i^i  U ) ) ) )
175, 8, 15, 16syl3anc 1213 . . . . 5  |-  ( ph  ->  ( # `  (
( V  i^i  U
)  u.  ( W  i^i  U ) ) )  =  ( (
# `  ( V  i^i  U ) )  +  ( # `  ( W  i^i  U ) ) ) )
182, 17syl5eq 2485 . . . 4  |-  ( ph  ->  ( # `  (
( V  u.  W
)  i^i  U )
)  =  ( (
# `  ( V  i^i  U ) )  +  ( # `  ( W  i^i  U ) ) ) )
19 difundir 3600 . . . . . 6  |-  ( ( V  u.  W ) 
\  U )  =  ( ( V  \  U )  u.  ( W  \  U ) )
2019fveq2i 5691 . . . . 5  |-  ( # `  ( ( V  u.  W )  \  U
) )  =  (
# `  ( ( V  \  U )  u.  ( W  \  U
) ) )
21 diffi 7539 . . . . . . 7  |-  ( V  e.  Fin  ->  ( V  \  U )  e. 
Fin )
223, 21syl 16 . . . . . 6  |-  ( ph  ->  ( V  \  U
)  e.  Fin )
23 diffi 7539 . . . . . . 7  |-  ( W  e.  Fin  ->  ( W  \  U )  e. 
Fin )
246, 23syl 16 . . . . . 6  |-  ( ph  ->  ( W  \  U
)  e.  Fin )
259difeq1d 3470 . . . . . . 7  |-  ( ph  ->  ( ( V  i^i  W )  \  U )  =  ( (/)  \  U
) )
26 difindir 3602 . . . . . . 7  |-  ( ( V  i^i  W ) 
\  U )  =  ( ( V  \  U )  i^i  ( W  \  U ) )
27 0dif 3747 . . . . . . 7  |-  ( (/)  \  U )  =  (/)
2825, 26, 273eqtr3g 2496 . . . . . 6  |-  ( ph  ->  ( ( V  \  U )  i^i  ( W  \  U ) )  =  (/) )
29 hashun 12141 . . . . . 6  |-  ( ( ( V  \  U
)  e.  Fin  /\  ( W  \  U )  e.  Fin  /\  (
( V  \  U
)  i^i  ( W  \  U ) )  =  (/) )  ->  ( # `  ( ( V  \  U )  u.  ( W  \  U ) ) )  =  ( (
# `  ( V  \  U ) )  +  ( # `  ( W  \  U ) ) ) )
3022, 24, 28, 29syl3anc 1213 . . . . 5  |-  ( ph  ->  ( # `  (
( V  \  U
)  u.  ( W 
\  U ) ) )  =  ( (
# `  ( V  \  U ) )  +  ( # `  ( W  \  U ) ) ) )
3120, 30syl5eq 2485 . . . 4  |-  ( ph  ->  ( # `  (
( V  u.  W
)  \  U )
)  =  ( (
# `  ( V  \  U ) )  +  ( # `  ( W  \  U ) ) ) )
3218, 31oveq12d 6108 . . 3  |-  ( ph  ->  ( ( # `  (
( V  u.  W
)  i^i  U )
)  -  ( # `  ( ( V  u.  W )  \  U
) ) )  =  ( ( ( # `  ( V  i^i  U
) )  +  (
# `  ( W  i^i  U ) ) )  -  ( ( # `  ( V  \  U
) )  +  (
# `  ( W  \  U ) ) ) ) )
33 hashcl 12122 . . . . . 6  |-  ( ( V  i^i  U )  e.  Fin  ->  ( # `
 ( V  i^i  U ) )  e.  NN0 )
343, 4, 333syl 20 . . . . 5  |-  ( ph  ->  ( # `  ( V  i^i  U ) )  e.  NN0 )
3534nn0cnd 10634 . . . 4  |-  ( ph  ->  ( # `  ( V  i^i  U ) )  e.  CC )
36 hashcl 12122 . . . . . 6  |-  ( ( W  i^i  U )  e.  Fin  ->  ( # `
 ( W  i^i  U ) )  e.  NN0 )
376, 7, 363syl 20 . . . . 5  |-  ( ph  ->  ( # `  ( W  i^i  U ) )  e.  NN0 )
3837nn0cnd 10634 . . . 4  |-  ( ph  ->  ( # `  ( W  i^i  U ) )  e.  CC )
39 hashcl 12122 . . . . . 6  |-  ( ( V  \  U )  e.  Fin  ->  ( # `
 ( V  \  U ) )  e. 
NN0 )
403, 21, 393syl 20 . . . . 5  |-  ( ph  ->  ( # `  ( V  \  U ) )  e.  NN0 )
4140nn0cnd 10634 . . . 4  |-  ( ph  ->  ( # `  ( V  \  U ) )  e.  CC )
42 hashcl 12122 . . . . . 6  |-  ( ( W  \  U )  e.  Fin  ->  ( # `
 ( W  \  U ) )  e. 
NN0 )
436, 23, 423syl 20 . . . . 5  |-  ( ph  ->  ( # `  ( W  \  U ) )  e.  NN0 )
4443nn0cnd 10634 . . . 4  |-  ( ph  ->  ( # `  ( W  \  U ) )  e.  CC )
4535, 38, 41, 44addsub4d 9762 . . 3  |-  ( ph  ->  ( ( ( # `  ( V  i^i  U
) )  +  (
# `  ( W  i^i  U ) ) )  -  ( ( # `  ( V  \  U
) )  +  (
# `  ( W  \  U ) ) ) )  =  ( ( ( # `  ( V  i^i  U ) )  -  ( # `  ( V  \  U ) ) )  +  ( (
# `  ( W  i^i  U ) )  -  ( # `  ( W 
\  U ) ) ) ) )
4632, 45eqtrd 2473 . 2  |-  ( ph  ->  ( ( # `  (
( V  u.  W
)  i^i  U )
)  -  ( # `  ( ( V  u.  W )  \  U
) ) )  =  ( ( ( # `  ( V  i^i  U
) )  -  ( # `
 ( V  \  U ) ) )  +  ( ( # `  ( W  i^i  U
) )  -  ( # `
 ( W  \  U ) ) ) ) )
47 ballotlemgun.1 . . 3  |-  ( ph  ->  U  e.  Fin )
48 unfi 7575 . . . 4  |-  ( ( V  e.  Fin  /\  W  e.  Fin )  ->  ( V  u.  W
)  e.  Fin )
493, 6, 48syl2anc 656 . . 3  |-  ( ph  ->  ( V  u.  W
)  e.  Fin )
50 ballotth.m . . . 4  |-  M  e.  NN
51 ballotth.n . . . 4  |-  N  e.  NN
52 ballotth.o . . . 4  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
53 ballotth.p . . . 4  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
54 ballotth.f . . . 4  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
55 ballotth.e . . . 4  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
56 ballotth.mgtn . . . 4  |-  N  < 
M
57 ballotth.i . . . 4  |-  I  =  ( c  e.  ( O  \  E ) 
|->  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  c
) `  k )  =  0 } ,  RR ,  `'  <  ) )
58 ballotth.s . . . 4  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
59 ballotth.r . . . 4  |-  R  =  ( c  e.  ( O  \  E ) 
|->  ( ( S `  c ) " c
) )
60 ballotlemg . . . 4  |-  .^  =  ( u  e.  Fin ,  v  e.  Fin  |->  ( ( # `  (
v  i^i  u )
)  -  ( # `  ( v  \  u
) ) ) )
6150, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60ballotlemgval 26820 . . 3  |-  ( ( U  e.  Fin  /\  ( V  u.  W
)  e.  Fin )  ->  ( U  .^  ( V  u.  W )
)  =  ( (
# `  ( ( V  u.  W )  i^i  U ) )  -  ( # `  ( ( V  u.  W ) 
\  U ) ) ) )
6247, 49, 61syl2anc 656 . 2  |-  ( ph  ->  ( U  .^  ( V  u.  W )
)  =  ( (
# `  ( ( V  u.  W )  i^i  U ) )  -  ( # `  ( ( V  u.  W ) 
\  U ) ) ) )
6350, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60ballotlemgval 26820 . . . 4  |-  ( ( U  e.  Fin  /\  V  e.  Fin )  ->  ( U  .^  V
)  =  ( (
# `  ( V  i^i  U ) )  -  ( # `  ( V 
\  U ) ) ) )
6447, 3, 63syl2anc 656 . . 3  |-  ( ph  ->  ( U  .^  V
)  =  ( (
# `  ( V  i^i  U ) )  -  ( # `  ( V 
\  U ) ) ) )
6550, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60ballotlemgval 26820 . . . 4  |-  ( ( U  e.  Fin  /\  W  e.  Fin )  ->  ( U  .^  W
)  =  ( (
# `  ( W  i^i  U ) )  -  ( # `  ( W 
\  U ) ) ) )
6647, 6, 65syl2anc 656 . . 3  |-  ( ph  ->  ( U  .^  W
)  =  ( (
# `  ( W  i^i  U ) )  -  ( # `  ( W 
\  U ) ) ) )
6764, 66oveq12d 6108 . 2  |-  ( ph  ->  ( ( U  .^  V )  +  ( U  .^  W )
)  =  ( ( ( # `  ( V  i^i  U ) )  -  ( # `  ( V  \  U ) ) )  +  ( (
# `  ( W  i^i  U ) )  -  ( # `  ( W 
\  U ) ) ) ) )
6846, 62, 673eqtr4d 2483 1  |-  ( ph  ->  ( U  .^  ( V  u.  W )
)  =  ( ( U  .^  V )  +  ( U  .^  W ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 1761   A.wral 2713   {crab 2717    \ cdif 3322    u. cun 3323    i^i cin 3324   (/)c0 3634   ifcif 3788   ~Pcpw 3857   class class class wbr 4289    e. cmpt 4347   `'ccnv 4835   "cima 4839   ` cfv 5415  (class class class)co 6090    e. cmpt2 6092   Fincfn 7306   supcsup 7686   RRcr 9277   0cc0 9278   1c1 9279    + caddc 9281    < clt 9414    <_ cle 9415    - cmin 9591    / cdiv 9989   NNcn 10318   NN0cn0 10575   ZZcz 10642   ...cfz 11433   #chash 12099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-card 8105  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-n0 10576  df-z 10643  df-uz 10858  df-hash 12100
This theorem is referenced by:  ballotlemfrceq  26825
  Copyright terms: Public domain W3C validator