Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfrcn0 Structured version   Unicode version

Theorem ballotlemfrcn0 28261
Description: Value of  F for a reversed counting  ( R `  C ), before the first tie, cannot be zero . (Contributed by Thierry Arnoux, 25-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotth.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
ballotth.e  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
ballotth.mgtn  |-  N  < 
M
ballotth.i  |-  I  =  ( c  e.  ( O  \  E ) 
|->  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  c
) `  k )  =  0 } ,  RR ,  `'  <  ) )
ballotth.s  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
ballotth.r  |-  R  =  ( c  e.  ( O  \  E ) 
|->  ( ( S `  c ) " c
) )
Assertion
Ref Expression
ballotlemfrcn0  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( F `  ( R `  C ) ) `  J )  =/=  0 )
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O    k, M    k, N    k, O    i, c, F, k    C, i, k    i, E, k    C, k    k, I, c    E, c    i, I, c    k, J    S, k, i, c    R, i   
i, J
Allowed substitution hints:    C( x, c)    P( x, i, k, c)    R( x, k, c)    S( x)    E( x)    F( x)    I( x)    J( x, c)    M( x)    N( x)    O( x)

Proof of Theorem ballotlemfrcn0
Dummy variables  v  u  y  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1z 10904 . . . . . 6  |-  1  e.  ZZ
21a1i 11 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
1  e.  ZZ )
3 ballotth.m . . . . . . . 8  |-  M  e.  NN
4 ballotth.n . . . . . . . 8  |-  N  e.  NN
5 nnaddcl 10568 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  +  N
)  e.  NN )
63, 4, 5mp2an 672 . . . . . . 7  |-  ( M  +  N )  e.  NN
76nnzi 10898 . . . . . 6  |-  ( M  +  N )  e.  ZZ
87a1i 11 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( M  +  N
)  e.  ZZ )
9 ballotth.o . . . . . . . . 9  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
10 ballotth.p . . . . . . . . 9  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
11 ballotth.f . . . . . . . . 9  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
12 ballotth.e . . . . . . . . 9  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
13 ballotth.mgtn . . . . . . . . 9  |-  N  < 
M
14 ballotth.i . . . . . . . . 9  |-  I  =  ( c  e.  ( O  \  E ) 
|->  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  c
) `  k )  =  0 } ,  RR ,  `'  <  ) )
15 ballotth.s . . . . . . . . 9  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
163, 4, 9, 10, 11, 12, 13, 14, 15ballotlemsdom 28243 . . . . . . . 8  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  ->  ( ( S `
 C ) `  J )  e.  ( 1 ... ( M  +  N ) ) )
17 elfzelz 11698 . . . . . . . 8  |-  ( ( ( S `  C
) `  J )  e.  ( 1 ... ( M  +  N )
)  ->  ( ( S `  C ) `  J )  e.  ZZ )
1816, 17syl 16 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  ->  ( ( S `
 C ) `  J )  e.  ZZ )
19183adant3 1016 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( S `  C ) `  J
)  e.  ZZ )
2019, 2zsubcld 10981 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( ( S `
 C ) `  J )  -  1 )  e.  ZZ )
213, 4, 9, 10, 11, 12, 13, 14, 15ballotlemsgt1 28242 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
1  <  ( ( S `  C ) `  J ) )
22 zltlem1 10925 . . . . . . 7  |-  ( ( 1  e.  ZZ  /\  ( ( S `  C ) `  J
)  e.  ZZ )  ->  ( 1  < 
( ( S `  C ) `  J
)  <->  1  <_  (
( ( S `  C ) `  J
)  -  1 ) ) )
2322biimpa 484 . . . . . 6  |-  ( ( ( 1  e.  ZZ  /\  ( ( S `  C ) `  J
)  e.  ZZ )  /\  1  <  (
( S `  C
) `  J )
)  ->  1  <_  ( ( ( S `  C ) `  J
)  -  1 ) )
242, 19, 21, 23syl21anc 1227 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
1  <_  ( (
( S `  C
) `  J )  -  1 ) )
2519zred 10976 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( S `  C ) `  J
)  e.  RR )
26 1re 9605 . . . . . . . 8  |-  1  e.  RR
2726a1i 11 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
1  e.  RR )
2825, 27resubcld 9997 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( ( S `
 C ) `  J )  -  1 )  e.  RR )
29 simp1 996 . . . . . . . 8  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  ->  C  e.  ( O  \  E ) )
303, 4, 9, 10, 11, 12, 13, 14ballotlemiex 28233 . . . . . . . . 9  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  e.  ( 1 ... ( M  +  N ) )  /\  ( ( F `  C ) `  (
I `  C )
)  =  0 ) )
3130simpld 459 . . . . . . . 8  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  e.  ( 1 ... ( M  +  N )
) )
32 elfzelz 11698 . . . . . . . 8  |-  ( ( I `  C )  e.  ( 1 ... ( M  +  N
) )  ->  (
I `  C )  e.  ZZ )
3329, 31, 323syl 20 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( I `  C
)  e.  ZZ )
3433zred 10976 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( I `  C
)  e.  RR )
358zred 10976 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( M  +  N
)  e.  RR )
36 elfzelz 11698 . . . . . . . . . . . 12  |-  ( J  e.  ( 1 ... ( M  +  N
) )  ->  J  e.  ZZ )
37363ad2ant2 1018 . . . . . . . . . . 11  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  ->  J  e.  ZZ )
38 elfzle1 11699 . . . . . . . . . . . 12  |-  ( J  e.  ( 1 ... ( M  +  N
) )  ->  1  <_  J )
39383ad2ant2 1018 . . . . . . . . . . 11  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
1  <_  J )
4037zred 10976 . . . . . . . . . . . 12  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  ->  J  e.  RR )
41 simp3 998 . . . . . . . . . . . 12  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  ->  J  <  ( I `  C ) )
4240, 34, 41ltled 9742 . . . . . . . . . . 11  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  ->  J  <_  ( I `  C ) )
43 elfz4 11691 . . . . . . . . . . 11  |-  ( ( ( 1  e.  ZZ  /\  ( I `  C
)  e.  ZZ  /\  J  e.  ZZ )  /\  ( 1  <_  J  /\  J  <_  ( I `
 C ) ) )  ->  J  e.  ( 1 ... (
I `  C )
) )
442, 33, 37, 39, 42, 43syl32anc 1236 . . . . . . . . . 10  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  ->  J  e.  ( 1 ... ( I `  C ) ) )
453, 4, 9, 10, 11, 12, 13, 14, 15ballotlemsel1i 28244 . . . . . . . . . 10  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) `  J )  e.  ( 1 ... ( I `
 C ) ) )
4629, 44, 45syl2anc 661 . . . . . . . . 9  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( S `  C ) `  J
)  e.  ( 1 ... ( I `  C ) ) )
47 elfzle2 11700 . . . . . . . . 9  |-  ( ( ( S `  C
) `  J )  e.  ( 1 ... (
I `  C )
)  ->  ( ( S `  C ) `  J )  <_  (
I `  C )
)
4846, 47syl 16 . . . . . . . 8  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( S `  C ) `  J
)  <_  ( I `  C ) )
49 zlem1lt 10924 . . . . . . . . 9  |-  ( ( ( ( S `  C ) `  J
)  e.  ZZ  /\  ( I `  C
)  e.  ZZ )  ->  ( ( ( S `  C ) `
 J )  <_ 
( I `  C
)  <->  ( ( ( S `  C ) `
 J )  - 
1 )  <  (
I `  C )
) )
5019, 33, 49syl2anc 661 . . . . . . . 8  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( ( S `
 C ) `  J )  <_  (
I `  C )  <->  ( ( ( S `  C ) `  J
)  -  1 )  <  ( I `  C ) ) )
5148, 50mpbid 210 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( ( S `
 C ) `  J )  -  1 )  <  ( I `
 C ) )
5228, 34, 51ltled 9742 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( ( S `
 C ) `  J )  -  1 )  <_  ( I `  C ) )
53 elfzle2 11700 . . . . . . 7  |-  ( ( I `  C )  e.  ( 1 ... ( M  +  N
) )  ->  (
I `  C )  <_  ( M  +  N
) )
5429, 31, 533syl 20 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( I `  C
)  <_  ( M  +  N ) )
5528, 34, 35, 52, 54letrd 9748 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( ( S `
 C ) `  J )  -  1 )  <_  ( M  +  N ) )
56 elfz4 11691 . . . . 5  |-  ( ( ( 1  e.  ZZ  /\  ( M  +  N
)  e.  ZZ  /\  ( ( ( S `
 C ) `  J )  -  1 )  e.  ZZ )  /\  ( 1  <_ 
( ( ( S `
 C ) `  J )  -  1 )  /\  ( ( ( S `  C
) `  J )  -  1 )  <_ 
( M  +  N
) ) )  -> 
( ( ( S `
 C ) `  J )  -  1 )  e.  ( 1 ... ( M  +  N ) ) )
572, 8, 20, 24, 55, 56syl32anc 1236 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( ( S `
 C ) `  J )  -  1 )  e.  ( 1 ... ( M  +  N ) ) )
58 fvex 5881 . . . . . . . . . 10  |-  ( I `
 C )  e. 
_V
59 ovex 6319 . . . . . . . . . 10  |-  ( ( ( S `  C
) `  J )  -  1 )  e. 
_V
6058, 59brcnv 5190 . . . . . . . . 9  |-  ( ( I `  C ) `'  <  ( ( ( S `  C ) `
 J )  - 
1 )  <->  ( (
( S `  C
) `  J )  -  1 )  < 
( I `  C
) )
6151, 60sylibr 212 . . . . . . . 8  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( I `  C
) `'  <  (
( ( S `  C ) `  J
)  -  1 ) )
623, 4, 9, 10, 11, 12, 13, 14ballotlemi 28232 . . . . . . . . . 10  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  =  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  C
) `  k )  =  0 } ,  RR ,  `'  <  ) )
6362breq1d 4462 . . . . . . . . 9  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
) `'  <  (
( ( S `  C ) `  J
)  -  1 )  <->  sup ( { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  C ) `
 k )  =  0 } ,  RR ,  `'  <  ) `'  <  ( ( ( S `  C ) `
 J )  - 
1 ) ) )
64633ad2ant1 1017 . . . . . . . 8  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( I `  C ) `'  <  ( ( ( S `  C ) `  J
)  -  1 )  <->  sup ( { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  C ) `
 k )  =  0 } ,  RR ,  `'  <  ) `'  <  ( ( ( S `  C ) `
 J )  - 
1 ) ) )
6561, 64mpbid 210 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  ->  sup ( { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  C ) `
 k )  =  0 } ,  RR ,  `'  <  ) `'  <  ( ( ( S `  C ) `
 J )  - 
1 ) )
66 ltso 9675 . . . . . . . . . . 11  |-  <  Or  RR
67 cnvso 5551 . . . . . . . . . . 11  |-  (  < 
Or  RR  <->  `'  <  Or  RR )
6866, 67mpbi 208 . . . . . . . . . 10  |-  `'  <  Or  RR
6968a1i 11 . . . . . . . . 9  |-  ( C  e.  ( O  \  E )  ->  `'  <  Or  RR )
703, 4, 9, 10, 11, 12, 13, 14ballotlemsup 28236 . . . . . . . . 9  |-  ( C  e.  ( O  \  E )  ->  E. z  e.  RR  ( A. w  e.  { k  e.  ( 1 ... ( M  +  N ) )  |  ( ( F `
 C ) `  k )  =  0 }  -.  z `'  <  w  /\  A. w  e.  RR  (
w `'  <  z  ->  E. y  e.  {
k  e.  ( 1 ... ( M  +  N ) )  |  ( ( F `  C ) `  k
)  =  0 } w `'  <  y
) ) )
7169, 70supub 7929 . . . . . . . 8  |-  ( C  e.  ( O  \  E )  ->  (
( ( ( S `
 C ) `  J )  -  1 )  e.  { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  C
) `  k )  =  0 }  ->  -. 
sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  C
) `  k )  =  0 } ,  RR ,  `'  <  ) `'  <  ( ( ( S `  C ) `
 J )  - 
1 ) ) )
7271con2d 115 . . . . . . 7  |-  ( C  e.  ( O  \  E )  ->  ( sup ( { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  C ) `
 k )  =  0 } ,  RR ,  `'  <  ) `'  <  ( ( ( S `  C ) `
 J )  - 
1 )  ->  -.  ( ( ( S `
 C ) `  J )  -  1 )  e.  { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  C
) `  k )  =  0 } ) )
7329, 65, 72sylc 60 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  ->  -.  ( ( ( S `
 C ) `  J )  -  1 )  e.  { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  C
) `  k )  =  0 } )
74 fveq2 5871 . . . . . . . 8  |-  ( k  =  ( ( ( S `  C ) `
 J )  - 
1 )  ->  (
( F `  C
) `  k )  =  ( ( F `
 C ) `  ( ( ( S `
 C ) `  J )  -  1 ) ) )
7574eqeq1d 2469 . . . . . . 7  |-  ( k  =  ( ( ( S `  C ) `
 J )  - 
1 )  ->  (
( ( F `  C ) `  k
)  =  0  <->  (
( F `  C
) `  ( (
( S `  C
) `  J )  -  1 ) )  =  0 ) )
7675elrab 3266 . . . . . 6  |-  ( ( ( ( S `  C ) `  J
)  -  1 )  e.  { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  C ) `
 k )  =  0 }  <->  ( (
( ( S `  C ) `  J
)  -  1 )  e.  ( 1 ... ( M  +  N
) )  /\  (
( F `  C
) `  ( (
( S `  C
) `  J )  -  1 ) )  =  0 ) )
7773, 76sylnib 304 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  ->  -.  ( ( ( ( S `  C ) `
 J )  - 
1 )  e.  ( 1 ... ( M  +  N ) )  /\  ( ( F `
 C ) `  ( ( ( S `
 C ) `  J )  -  1 ) )  =  0 ) )
78 imnan 422 . . . . 5  |-  ( ( ( ( ( S `
 C ) `  J )  -  1 )  e.  ( 1 ... ( M  +  N ) )  ->  -.  ( ( F `  C ) `  (
( ( S `  C ) `  J
)  -  1 ) )  =  0 )  <->  -.  ( ( ( ( S `  C ) `
 J )  - 
1 )  e.  ( 1 ... ( M  +  N ) )  /\  ( ( F `
 C ) `  ( ( ( S `
 C ) `  J )  -  1 ) )  =  0 ) )
7977, 78sylibr 212 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( ( ( S `  C ) `
 J )  - 
1 )  e.  ( 1 ... ( M  +  N ) )  ->  -.  ( ( F `  C ) `  ( ( ( S `
 C ) `  J )  -  1 ) )  =  0 ) )
8057, 79mpd 15 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  ->  -.  ( ( F `  C ) `  (
( ( S `  C ) `  J
)  -  1 ) )  =  0 )
8180neqned 2670 . 2  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( F `  C ) `  (
( ( S `  C ) `  J
)  -  1 ) )  =/=  0 )
82 ballotth.r . . . . . . . . . 10  |-  R  =  ( c  e.  ( O  \  E ) 
|->  ( ( S `  c ) " c
) )
833, 4, 9, 10, 11, 12, 13, 14, 15, 82ballotlemro 28254 . . . . . . . . 9  |-  ( C  e.  ( O  \  E )  ->  ( R `  C )  e.  O )
8483adantr 465 . . . . . . . 8  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( R `  C )  e.  O
)
85 elfzelz 11698 . . . . . . . . 9  |-  ( J  e.  ( 1 ... ( I `  C
) )  ->  J  e.  ZZ )
8685adantl 466 . . . . . . . 8  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  J  e.  ZZ )
873, 4, 9, 10, 11, 84, 86ballotlemfelz 28222 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( F `
 ( R `  C ) ) `  J )  e.  ZZ )
8887zcnd 10977 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( F `
 ( R `  C ) ) `  J )  e.  CC )
8988negeq0d 9932 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( F `  ( R `
 C ) ) `
 J )  =  0  <->  -u ( ( F `
 ( R `  C ) ) `  J )  =  0 ) )
90 eqid 2467 . . . . . . 7  |-  ( u  e.  Fin ,  v  e.  Fin  |->  ( (
# `  ( v  i^i  u ) )  -  ( # `  ( v 
\  u ) ) ) )  =  ( u  e.  Fin , 
v  e.  Fin  |->  ( ( # `  (
v  i^i  u )
)  -  ( # `  ( v  \  u
) ) ) )
913, 4, 9, 10, 11, 12, 13, 14, 15, 82, 90ballotlemfrceq 28260 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( F `
 C ) `  ( ( ( S `
 C ) `  J )  -  1 ) )  =  -u ( ( F `  ( R `  C ) ) `  J ) )
9291eqeq1d 2469 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( F `  C ) `
 ( ( ( S `  C ) `
 J )  - 
1 ) )  =  0  <->  -u ( ( F `
 ( R `  C ) ) `  J )  =  0 ) )
9389, 92bitr4d 256 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( F `  ( R `
 C ) ) `
 J )  =  0  <->  ( ( F `
 C ) `  ( ( ( S `
 C ) `  J )  -  1 ) )  =  0 ) )
9493necon3bid 2725 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( F `  ( R `
 C ) ) `
 J )  =/=  0  <->  ( ( F `
 C ) `  ( ( ( S `
 C ) `  J )  -  1 ) )  =/=  0
) )
9529, 44, 94syl2anc 661 . 2  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( ( F `
 ( R `  C ) ) `  J )  =/=  0  <->  ( ( F `  C
) `  ( (
( S `  C
) `  J )  -  1 ) )  =/=  0 ) )
9681, 95mpbird 232 1  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( F `  ( R `  C ) ) `  J )  =/=  0 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2817   {crab 2821    \ cdif 3478    i^i cin 3480   ifcif 3944   ~Pcpw 4015   class class class wbr 4452    |-> cmpt 4510    Or wor 4804   `'ccnv 5003   "cima 5007   ` cfv 5593  (class class class)co 6294    |-> cmpt2 6296   Fincfn 7526   supcsup 7910   RRcr 9501   0cc0 9502   1c1 9503    + caddc 9505    < clt 9638    <_ cle 9639    - cmin 9815   -ucneg 9816    / cdiv 10216   NNcn 10546   ZZcz 10874   ...cfz 11682   #chash 12383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4563  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6586  ax-cnex 9558  ax-resscn 9559  ax-1cn 9560  ax-icn 9561  ax-addcl 9562  ax-addrcl 9563  ax-mulcl 9564  ax-mulrcl 9565  ax-mulcom 9566  ax-addass 9567  ax-mulass 9568  ax-distr 9569  ax-i2m1 9570  ax-1ne0 9571  ax-1rid 9572  ax-rnegex 9573  ax-rrecex 9574  ax-cnre 9575  ax-pre-lttri 9576  ax-pre-lttrn 9577  ax-pre-ltadd 9578  ax-pre-mulgt0 9579
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4251  df-int 4288  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-riota 6255  df-ov 6297  df-oprab 6298  df-mpt2 6299  df-om 6695  df-1st 6794  df-2nd 6795  df-recs 7052  df-rdg 7086  df-1o 7140  df-oadd 7144  df-er 7321  df-en 7527  df-dom 7528  df-sdom 7529  df-fin 7530  df-sup 7911  df-card 8330  df-cda 8558  df-pnf 9640  df-mnf 9641  df-xr 9642  df-ltxr 9643  df-le 9644  df-sub 9817  df-neg 9818  df-nn 10547  df-2 10604  df-n0 10806  df-z 10875  df-uz 11093  df-rp 11231  df-fz 11683  df-hash 12384
This theorem is referenced by:  ballotlemirc  28263
  Copyright terms: Public domain W3C validator