Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfrceqOLD Structured version   Visualization version   Unicode version

Theorem ballotlemfrceqOLD 29411
Description: Value of  F for a reverse counting  ( R `  C ). (Contributed by Thierry Arnoux, 27-Apr-2017.) Obsolete version of ballotlemfrceq 29373 as of 6-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
ballotthOLD.m  |-  M  e.  NN
ballotthOLD.n  |-  N  e.  NN
ballotthOLD.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotthOLD.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotthOLD.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
ballotthOLD.e  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
ballotthOLD.mgtn  |-  N  < 
M
ballotthOLD.i  |-  I  =  ( c  e.  ( O  \  E ) 
|->  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  c
) `  k )  =  0 } ,  RR ,  `'  <  ) )
ballotthOLD.s  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
ballotthOLD.r  |-  R  =  ( c  e.  ( O  \  E ) 
|->  ( ( S `  c ) " c
) )
ballotlemgOLD  |-  .^  =  ( u  e.  Fin ,  v  e.  Fin  |->  ( ( # `  (
v  i^i  u )
)  -  ( # `  ( v  \  u
) ) ) )
Assertion
Ref Expression
ballotlemfrceqOLD  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( F `
 C ) `  ( ( ( S `
 C ) `  J )  -  1 ) )  =  -u ( ( F `  ( R `  C ) ) `  J ) )
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O    k, M    k, N    k, O    C, i, k    i,
c, F, k    i, E, k    k, I, c    E, c    i, I, c   
k, J    S, k,
i, c    R, i    v, u, C    u, I,
v    u, J, v    u, R, v    u, S, v   
i, J
Allowed substitution hints:    C( x, c)    P( x, v, u, i, k, c)    R( x, k, c)    S( x)    E( x, v, u)    .^ ( x, v, u, i, k, c)    F( x, v, u)    I( x)    J( x, c)    M( x, v, u)    N( x, v, u)    O( x, v, u)

Proof of Theorem ballotlemfrceqOLD
StepHypRef Expression
1 ballotthOLD.m . . . . . . . . 9  |-  M  e.  NN
2 ballotthOLD.n . . . . . . . . 9  |-  N  e.  NN
3 ballotthOLD.o . . . . . . . . 9  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
4 ballotthOLD.p . . . . . . . . 9  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
5 ballotthOLD.f . . . . . . . . 9  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
6 ballotthOLD.e . . . . . . . . 9  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
7 ballotthOLD.mgtn . . . . . . . . 9  |-  N  < 
M
8 ballotthOLD.i . . . . . . . . 9  |-  I  =  ( c  e.  ( O  \  E ) 
|->  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  c
) `  k )  =  0 } ,  RR ,  `'  <  ) )
9 ballotthOLD.s . . . . . . . . 9  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
101, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsel1iOLD 29395 . . . . . . . 8  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) `  J )  e.  ( 1 ... ( I `
 C ) ) )
11 1zzd 10975 . . . . . . . . 9  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  1  e.  ZZ )
121, 2, 3, 4, 5, 6, 7, 8ballotlemiexOLD 29384 . . . . . . . . . . . 12  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  e.  ( 1 ... ( M  +  N ) )  /\  ( ( F `  C ) `  (
I `  C )
)  =  0 ) )
1312adantr 467 . . . . . . . . . . 11  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( I `
 C )  e.  ( 1 ... ( M  +  N )
)  /\  ( ( F `  C ) `  ( I `  C
) )  =  0 ) )
1413simpld 461 . . . . . . . . . 10  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( I `  C )  e.  ( 1 ... ( M  +  N ) ) )
15 elfzelz 11807 . . . . . . . . . 10  |-  ( ( I `  C )  e.  ( 1 ... ( M  +  N
) )  ->  (
I `  C )  e.  ZZ )
1614, 15syl 17 . . . . . . . . 9  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( I `  C )  e.  ZZ )
17 elfzuz3 11804 . . . . . . . . . . . . 13  |-  ( ( I `  C )  e.  ( 1 ... ( M  +  N
) )  ->  ( M  +  N )  e.  ( ZZ>= `  ( I `  C ) ) )
18 fzss2 11845 . . . . . . . . . . . . 13  |-  ( ( M  +  N )  e.  ( ZZ>= `  (
I `  C )
)  ->  ( 1 ... ( I `  C ) )  C_  ( 1 ... ( M  +  N )
) )
1914, 17, 183syl 18 . . . . . . . . . . . 12  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( 1 ... ( I `  C
) )  C_  (
1 ... ( M  +  N ) ) )
20 simpr 463 . . . . . . . . . . . 12  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  J  e.  ( 1 ... ( I `
 C ) ) )
2119, 20sseldd 3435 . . . . . . . . . . 11  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  J  e.  ( 1 ... ( M  +  N ) ) )
221, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsdomOLD 29394 . . . . . . . . . . 11  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  ->  ( ( S `
 C ) `  J )  e.  ( 1 ... ( M  +  N ) ) )
2321, 22syldan 473 . . . . . . . . . 10  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) `  J )  e.  ( 1 ... ( M  +  N ) ) )
24 elfzelz 11807 . . . . . . . . . 10  |-  ( ( ( S `  C
) `  J )  e.  ( 1 ... ( M  +  N )
)  ->  ( ( S `  C ) `  J )  e.  ZZ )
2523, 24syl 17 . . . . . . . . 9  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) `  J )  e.  ZZ )
26 fzsubel 11841 . . . . . . . . 9  |-  ( ( ( 1  e.  ZZ  /\  ( I `  C
)  e.  ZZ )  /\  ( ( ( S `  C ) `
 J )  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( ( ( S `
 C ) `  J )  e.  ( 1 ... ( I `
 C ) )  <-> 
( ( ( S `
 C ) `  J )  -  1 )  e.  ( ( 1  -  1 ) ... ( ( I `
 C )  - 
1 ) ) ) )
2711, 16, 25, 11, 26syl22anc 1270 . . . . . . . 8  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( S `  C ) `
 J )  e.  ( 1 ... (
I `  C )
)  <->  ( ( ( S `  C ) `
 J )  - 
1 )  e.  ( ( 1  -  1 ) ... ( ( I `  C )  -  1 ) ) ) )
2810, 27mpbid 214 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( S `  C ) `
 J )  - 
1 )  e.  ( ( 1  -  1 ) ... ( ( I `  C )  -  1 ) ) )
29 1m1e0 10685 . . . . . . . 8  |-  ( 1  -  1 )  =  0
3029oveq1i 6305 . . . . . . 7  |-  ( ( 1  -  1 ) ... ( ( I `
 C )  - 
1 ) )  =  ( 0 ... (
( I `  C
)  -  1 ) )
3128, 30syl6eleq 2541 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( S `  C ) `
 J )  - 
1 )  e.  ( 0 ... ( ( I `  C )  -  1 ) ) )
3212simpld 461 . . . . . . . . . . 11  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  e.  ( 1 ... ( M  +  N )
) )
3332, 15syl 17 . . . . . . . . . 10  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  e.  ZZ )
34 1zzd 10975 . . . . . . . . . 10  |-  ( C  e.  ( O  \  E )  ->  1  e.  ZZ )
3533, 34zsubcld 11052 . . . . . . . . 9  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  -  1 )  e.  ZZ )
36 nnaddcl 10638 . . . . . . . . . . . 12  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  +  N
)  e.  NN )
371, 2, 36mp2an 679 . . . . . . . . . . 11  |-  ( M  +  N )  e.  NN
3837nnzi 10968 . . . . . . . . . 10  |-  ( M  +  N )  e.  ZZ
3938a1i 11 . . . . . . . . 9  |-  ( C  e.  ( O  \  E )  ->  ( M  +  N )  e.  ZZ )
40 elfzle2 11810 . . . . . . . . . . 11  |-  ( ( I `  C )  e.  ( 1 ... ( M  +  N
) )  ->  (
I `  C )  <_  ( M  +  N
) )
4132, 40syl 17 . . . . . . . . . 10  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  <_  ( M  +  N
) )
42 zlem1lt 10995 . . . . . . . . . . . 12  |-  ( ( ( I `  C
)  e.  ZZ  /\  ( M  +  N
)  e.  ZZ )  ->  ( ( I `
 C )  <_ 
( M  +  N
)  <->  ( ( I `
 C )  - 
1 )  <  ( M  +  N )
) )
4333, 39, 42syl2anc 667 . . . . . . . . . . 11  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  <_  ( M  +  N )  <->  ( (
I `  C )  -  1 )  < 
( M  +  N
) ) )
4435zred 11047 . . . . . . . . . . . 12  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  -  1 )  e.  RR )
4539zred 11047 . . . . . . . . . . . 12  |-  ( C  e.  ( O  \  E )  ->  ( M  +  N )  e.  RR )
46 ltle 9727 . . . . . . . . . . . 12  |-  ( ( ( ( I `  C )  -  1 )  e.  RR  /\  ( M  +  N
)  e.  RR )  ->  ( ( ( I `  C )  -  1 )  < 
( M  +  N
)  ->  ( (
I `  C )  -  1 )  <_ 
( M  +  N
) ) )
4744, 45, 46syl2anc 667 . . . . . . . . . . 11  |-  ( C  e.  ( O  \  E )  ->  (
( ( I `  C )  -  1 )  <  ( M  +  N )  -> 
( ( I `  C )  -  1 )  <_  ( M  +  N ) ) )
4843, 47sylbid 219 . . . . . . . . . 10  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  <_  ( M  +  N )  ->  (
( I `  C
)  -  1 )  <_  ( M  +  N ) ) )
4941, 48mpd 15 . . . . . . . . 9  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  -  1 )  <_  ( M  +  N ) )
50 eluz2 11172 . . . . . . . . 9  |-  ( ( M  +  N )  e.  ( ZZ>= `  (
( I `  C
)  -  1 ) )  <->  ( ( ( I `  C )  -  1 )  e.  ZZ  /\  ( M  +  N )  e.  ZZ  /\  ( ( I `  C )  -  1 )  <_ 
( M  +  N
) ) )
5135, 39, 49, 50syl3anbrc 1193 . . . . . . . 8  |-  ( C  e.  ( O  \  E )  ->  ( M  +  N )  e.  ( ZZ>= `  ( (
I `  C )  -  1 ) ) )
52 fzss2 11845 . . . . . . . 8  |-  ( ( M  +  N )  e.  ( ZZ>= `  (
( I `  C
)  -  1 ) )  ->  ( 0 ... ( ( I `
 C )  - 
1 ) )  C_  ( 0 ... ( M  +  N )
) )
5351, 52syl 17 . . . . . . 7  |-  ( C  e.  ( O  \  E )  ->  (
0 ... ( ( I `
 C )  - 
1 ) )  C_  ( 0 ... ( M  +  N )
) )
5453sselda 3434 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  ( ( ( S `
 C ) `  J )  -  1 )  e.  ( 0 ... ( ( I `
 C )  - 
1 ) ) )  ->  ( ( ( S `  C ) `
 J )  - 
1 )  e.  ( 0 ... ( M  +  N ) ) )
5531, 54syldan 473 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( S `  C ) `
 J )  - 
1 )  e.  ( 0 ... ( M  +  N ) ) )
56 ballotthOLD.r . . . . . 6  |-  R  =  ( c  e.  ( O  \  E ) 
|->  ( ( S `  c ) " c
) )
57 ballotlemgOLD . . . . . 6  |-  .^  =  ( u  e.  Fin ,  v  e.  Fin  |->  ( ( # `  (
v  i^i  u )
)  -  ( # `  ( v  \  u
) ) ) )
581, 2, 3, 4, 5, 6, 7, 8, 9, 56, 57ballotlemfgOLD 29408 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  ( ( ( S `
 C ) `  J )  -  1 )  e.  ( 0 ... ( M  +  N ) ) )  ->  ( ( F `
 C ) `  ( ( ( S `
 C ) `  J )  -  1 ) )  =  ( C  .^  ( 1 ... ( ( ( S `  C ) `
 J )  - 
1 ) ) ) )
5955, 58syldan 473 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( F `
 C ) `  ( ( ( S `
 C ) `  J )  -  1 ) )  =  ( C  .^  ( 1 ... ( ( ( S `  C ) `
 J )  - 
1 ) ) ) )
601, 2, 3, 4, 5, 6, 7, 8, 9, 56, 57ballotlemfrcOLD 29409 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( F `
 ( R `  C ) ) `  J )  =  ( C  .^  ( (
( S `  C
) `  J ) ... ( I `  C
) ) ) )
6159, 60oveq12d 6313 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( F `  C ) `
 ( ( ( S `  C ) `
 J )  - 
1 ) )  +  ( ( F `  ( R `  C ) ) `  J ) )  =  ( ( C  .^  ( 1 ... ( ( ( S `  C ) `
 J )  - 
1 ) ) )  +  ( C  .^  ( ( ( S `
 C ) `  J ) ... (
I `  C )
) ) ) )
62 fzsplit3 28382 . . . . . 6  |-  ( ( ( S `  C
) `  J )  e.  ( 1 ... (
I `  C )
)  ->  ( 1 ... ( I `  C ) )  =  ( ( 1 ... ( ( ( S `
 C ) `  J )  -  1 ) )  u.  (
( ( S `  C ) `  J
) ... ( I `  C ) ) ) )
6310, 62syl 17 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( 1 ... ( I `  C
) )  =  ( ( 1 ... (
( ( S `  C ) `  J
)  -  1 ) )  u.  ( ( ( S `  C
) `  J ) ... ( I `  C
) ) ) )
6463oveq2d 6311 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( C  .^  ( 1 ... (
I `  C )
) )  =  ( C  .^  ( (
1 ... ( ( ( S `  C ) `
 J )  - 
1 ) )  u.  ( ( ( S `
 C ) `  J ) ... (
I `  C )
) ) ) )
65 1eluzge0 11209 . . . . . . . . 9  |-  1  e.  ( ZZ>= `  0 )
66 fzss1 11844 . . . . . . . . 9  |-  ( 1  e.  ( ZZ>= `  0
)  ->  ( 1 ... ( M  +  N ) )  C_  ( 0 ... ( M  +  N )
) )
6765, 66ax-mp 5 . . . . . . . 8  |-  ( 1 ... ( M  +  N ) )  C_  ( 0 ... ( M  +  N )
)
6867sseli 3430 . . . . . . 7  |-  ( ( I `  C )  e.  ( 1 ... ( M  +  N
) )  ->  (
I `  C )  e.  ( 0 ... ( M  +  N )
) )
691, 2, 3, 4, 5, 6, 7, 8, 9, 56, 57ballotlemfgOLD 29408 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  ( I `  C
)  e.  ( 0 ... ( M  +  N ) ) )  ->  ( ( F `
 C ) `  ( I `  C
) )  =  ( C  .^  ( 1 ... ( I `  C ) ) ) )
7068, 69sylan2 477 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  ( I `  C
)  e.  ( 1 ... ( M  +  N ) ) )  ->  ( ( F `
 C ) `  ( I `  C
) )  =  ( C  .^  ( 1 ... ( I `  C ) ) ) )
7114, 70syldan 473 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( F `
 C ) `  ( I `  C
) )  =  ( C  .^  ( 1 ... ( I `  C ) ) ) )
7213simprd 465 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( F `
 C ) `  ( I `  C
) )  =  0 )
7371, 72eqtr3d 2489 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( C  .^  ( 1 ... (
I `  C )
) )  =  0 )
74 fzfi 12192 . . . . . . 7  |-  ( 1 ... ( M  +  N ) )  e. 
Fin
75 eldifi 3557 . . . . . . . 8  |-  ( C  e.  ( O  \  E )  ->  C  e.  O )
761, 2, 3ballotlemelo 29332 . . . . . . . . 9  |-  ( C  e.  O  <->  ( C  C_  ( 1 ... ( M  +  N )
)  /\  ( # `  C
)  =  M ) )
7776simplbi 462 . . . . . . . 8  |-  ( C  e.  O  ->  C  C_  ( 1 ... ( M  +  N )
) )
7875, 77syl 17 . . . . . . 7  |-  ( C  e.  ( O  \  E )  ->  C  C_  ( 1 ... ( M  +  N )
) )
79 ssfi 7797 . . . . . . 7  |-  ( ( ( 1 ... ( M  +  N )
)  e.  Fin  /\  C  C_  ( 1 ... ( M  +  N
) ) )  ->  C  e.  Fin )
8074, 78, 79sylancr 670 . . . . . 6  |-  ( C  e.  ( O  \  E )  ->  C  e.  Fin )
8180adantr 467 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  C  e.  Fin )
82 fzfid 12193 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( 1 ... ( ( ( S `
 C ) `  J )  -  1 ) )  e.  Fin )
83 fzfid 12193 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( S `  C ) `
 J ) ... ( I `  C
) )  e.  Fin )
8425zred 11047 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) `  J )  e.  RR )
85 ltm1 10452 . . . . . 6  |-  ( ( ( S `  C
) `  J )  e.  RR  ->  ( (
( S `  C
) `  J )  -  1 )  < 
( ( S `  C ) `  J
) )
86 fzdisj 11833 . . . . . 6  |-  ( ( ( ( S `  C ) `  J
)  -  1 )  <  ( ( S `
 C ) `  J )  ->  (
( 1 ... (
( ( S `  C ) `  J
)  -  1 ) )  i^i  ( ( ( S `  C
) `  J ) ... ( I `  C
) ) )  =  (/) )
8784, 85, 863syl 18 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( 1 ... ( ( ( S `  C ) `
 J )  - 
1 ) )  i^i  ( ( ( S `
 C ) `  J ) ... (
I `  C )
) )  =  (/) )
881, 2, 3, 4, 5, 6, 7, 8, 9, 56, 57, 81, 82, 83, 87ballotlemgunOLD 29407 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( C  .^  ( ( 1 ... ( ( ( S `
 C ) `  J )  -  1 ) )  u.  (
( ( S `  C ) `  J
) ... ( I `  C ) ) ) )  =  ( ( C  .^  ( 1 ... ( ( ( S `  C ) `
 J )  - 
1 ) ) )  +  ( C  .^  ( ( ( S `
 C ) `  J ) ... (
I `  C )
) ) ) )
8964, 73, 883eqtr3rd 2496 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( C 
.^  ( 1 ... ( ( ( S `
 C ) `  J )  -  1 ) ) )  +  ( C  .^  (
( ( S `  C ) `  J
) ... ( I `  C ) ) ) )  =  0 )
9061, 89eqtrd 2487 . 2  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( F `  C ) `
 ( ( ( S `  C ) `
 J )  - 
1 ) )  +  ( ( F `  ( R `  C ) ) `  J ) )  =  0 )
9175adantr 467 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  C  e.  O
)
9225, 11zsubcld 11052 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( S `  C ) `
 J )  - 
1 )  e.  ZZ )
931, 2, 3, 4, 5, 91, 92ballotlemfelz 29335 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( F `
 C ) `  ( ( ( S `
 C ) `  J )  -  1 ) )  e.  ZZ )
9493zcnd 11048 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( F `
 C ) `  ( ( ( S `
 C ) `  J )  -  1 ) )  e.  CC )
951, 2, 3, 4, 5, 6, 7, 8, 9, 56ballotlemroOLD 29405 . . . . . 6  |-  ( C  e.  ( O  \  E )  ->  ( R `  C )  e.  O )
9695adantr 467 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( R `  C )  e.  O
)
97 elfzelz 11807 . . . . . 6  |-  ( J  e.  ( 1 ... ( I `  C
) )  ->  J  e.  ZZ )
9820, 97syl 17 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  J  e.  ZZ )
991, 2, 3, 4, 5, 96, 98ballotlemfelz 29335 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( F `
 ( R `  C ) ) `  J )  e.  ZZ )
10099zcnd 11048 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( F `
 ( R `  C ) ) `  J )  e.  CC )
101 addeq0 28332 . . 3  |-  ( ( ( ( F `  C ) `  (
( ( S `  C ) `  J
)  -  1 ) )  e.  CC  /\  ( ( F `  ( R `  C ) ) `  J )  e.  CC )  -> 
( ( ( ( F `  C ) `
 ( ( ( S `  C ) `
 J )  - 
1 ) )  +  ( ( F `  ( R `  C ) ) `  J ) )  =  0  <->  (
( F `  C
) `  ( (
( S `  C
) `  J )  -  1 ) )  =  -u ( ( F `
 ( R `  C ) ) `  J ) ) )
10294, 100, 101syl2anc 667 . 2  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( ( F `  C
) `  ( (
( S `  C
) `  J )  -  1 ) )  +  ( ( F `
 ( R `  C ) ) `  J ) )  =  0  <->  ( ( F `
 C ) `  ( ( ( S `
 C ) `  J )  -  1 ) )  =  -u ( ( F `  ( R `  C ) ) `  J ) ) )
10390, 102mpbid 214 1  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( F `
 C ) `  ( ( ( S `
 C ) `  J )  -  1 ) )  =  -u ( ( F `  ( R `  C ) ) `  J ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1446    e. wcel 1889   A.wral 2739   {crab 2743    \ cdif 3403    u. cun 3404    i^i cin 3405    C_ wss 3406   (/)c0 3733   ifcif 3883   ~Pcpw 3953   class class class wbr 4405    |-> cmpt 4464   `'ccnv 4836   "cima 4840   ` cfv 5585  (class class class)co 6295    |-> cmpt2 6297   Fincfn 7574   supcsup 7959   CCcc 9542   RRcr 9543   0cc0 9544   1c1 9545    + caddc 9547    < clt 9680    <_ cle 9681    - cmin 9865   -ucneg 9866    / cdiv 10276   NNcn 10616   ZZcz 10944   ZZ>=cuz 11166   ...cfz 11791   #chash 12522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-rep 4518  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588  ax-cnex 9600  ax-resscn 9601  ax-1cn 9602  ax-icn 9603  ax-addcl 9604  ax-addrcl 9605  ax-mulcl 9606  ax-mulrcl 9607  ax-mulcom 9608  ax-addass 9609  ax-mulass 9610  ax-distr 9611  ax-i2m1 9612  ax-1ne0 9613  ax-1rid 9614  ax-rnegex 9615  ax-rrecex 9616  ax-cnre 9617  ax-pre-lttri 9618  ax-pre-lttrn 9619  ax-pre-ltadd 9620  ax-pre-mulgt0 9621
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-nel 2627  df-ral 2744  df-rex 2745  df-reu 2746  df-rmo 2747  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-tp 3975  df-op 3977  df-uni 4202  df-int 4238  df-iun 4283  df-br 4406  df-opab 4465  df-mpt 4466  df-tr 4501  df-eprel 4748  df-id 4752  df-po 4758  df-so 4759  df-fr 4796  df-we 4798  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 5383  df-ord 5429  df-on 5430  df-lim 5431  df-suc 5432  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-riota 6257  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6698  df-1st 6798  df-2nd 6799  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-1o 7187  df-oadd 7191  df-er 7368  df-en 7575  df-dom 7576  df-sdom 7577  df-fin 7578  df-sup 7961  df-card 8378  df-cda 8603  df-pnf 9682  df-mnf 9683  df-xr 9684  df-ltxr 9685  df-le 9686  df-sub 9867  df-neg 9868  df-nn 10617  df-2 10675  df-n0 10877  df-z 10945  df-uz 11167  df-rp 11310  df-fz 11792  df-hash 12523
This theorem is referenced by:  ballotlemfrcn0OLD  29412
  Copyright terms: Public domain W3C validator