Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfrceq Structured version   Unicode version

Theorem ballotlemfrceq 26841
Description: Value of  F for a reverse counting  ( R `  C ). (Contributed by Thierry Arnoux, 27-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotth.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
ballotth.e  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
ballotth.mgtn  |-  N  < 
M
ballotth.i  |-  I  =  ( c  e.  ( O  \  E ) 
|->  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  c
) `  k )  =  0 } ,  RR ,  `'  <  ) )
ballotth.s  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
ballotth.r  |-  R  =  ( c  e.  ( O  \  E ) 
|->  ( ( S `  c ) " c
) )
ballotlemg  |-  .^  =  ( u  e.  Fin ,  v  e.  Fin  |->  ( ( # `  (
v  i^i  u )
)  -  ( # `  ( v  \  u
) ) ) )
Assertion
Ref Expression
ballotlemfrceq  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( F `
 C ) `  ( ( ( S `
 C ) `  J )  -  1 ) )  =  -u ( ( F `  ( R `  C ) ) `  J ) )
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O    k, M    k, N    k, O    i, c, F, k    C, i, k    i, E, k    C, k    k, I, c    E, c    i, I, c    k, J    S, k, i, c    R, i   
v, u, C    u, I, v    u, J, v   
u, R, v    u, S, v    i, J
Allowed substitution hints:    C( x, c)    P( x, v, u, i, k, c)    R( x, k, c)    S( x)    E( x, v, u)    .^ ( x, v, u, i, k, c)    F( x, v, u)    I( x)    J( x, c)    M( x, v, u)    N( x, v, u)    O( x, v, u)

Proof of Theorem ballotlemfrceq
StepHypRef Expression
1 ballotth.m . . . . . . . . 9  |-  M  e.  NN
2 ballotth.n . . . . . . . . 9  |-  N  e.  NN
3 ballotth.o . . . . . . . . 9  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
4 ballotth.p . . . . . . . . 9  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
5 ballotth.f . . . . . . . . 9  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
6 ballotth.e . . . . . . . . 9  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
7 ballotth.mgtn . . . . . . . . 9  |-  N  < 
M
8 ballotth.i . . . . . . . . 9  |-  I  =  ( c  e.  ( O  \  E ) 
|->  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  c
) `  k )  =  0 } ,  RR ,  `'  <  ) )
9 ballotth.s . . . . . . . . 9  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
101, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsel1i 26825 . . . . . . . 8  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) `  J )  e.  ( 1 ... ( I `
 C ) ) )
11 1z 10672 . . . . . . . . . 10  |-  1  e.  ZZ
1211a1i 11 . . . . . . . . 9  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  1  e.  ZZ )
131, 2, 3, 4, 5, 6, 7, 8ballotlemiex 26814 . . . . . . . . . . . 12  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  e.  ( 1 ... ( M  +  N ) )  /\  ( ( F `  C ) `  (
I `  C )
)  =  0 ) )
1413adantr 462 . . . . . . . . . . 11  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( I `
 C )  e.  ( 1 ... ( M  +  N )
)  /\  ( ( F `  C ) `  ( I `  C
) )  =  0 ) )
1514simpld 456 . . . . . . . . . 10  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( I `  C )  e.  ( 1 ... ( M  +  N ) ) )
16 elfzelz 11449 . . . . . . . . . 10  |-  ( ( I `  C )  e.  ( 1 ... ( M  +  N
) )  ->  (
I `  C )  e.  ZZ )
1715, 16syl 16 . . . . . . . . 9  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( I `  C )  e.  ZZ )
18 elfzuz3 11446 . . . . . . . . . . . . 13  |-  ( ( I `  C )  e.  ( 1 ... ( M  +  N
) )  ->  ( M  +  N )  e.  ( ZZ>= `  ( I `  C ) ) )
19 fzss2 11494 . . . . . . . . . . . . 13  |-  ( ( M  +  N )  e.  ( ZZ>= `  (
I `  C )
)  ->  ( 1 ... ( I `  C ) )  C_  ( 1 ... ( M  +  N )
) )
2015, 18, 193syl 20 . . . . . . . . . . . 12  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( 1 ... ( I `  C
) )  C_  (
1 ... ( M  +  N ) ) )
21 simpr 458 . . . . . . . . . . . 12  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  J  e.  ( 1 ... ( I `
 C ) ) )
2220, 21sseldd 3354 . . . . . . . . . . 11  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  J  e.  ( 1 ... ( M  +  N ) ) )
231, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsdom 26824 . . . . . . . . . . 11  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  ->  ( ( S `
 C ) `  J )  e.  ( 1 ... ( M  +  N ) ) )
2422, 23syldan 467 . . . . . . . . . 10  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) `  J )  e.  ( 1 ... ( M  +  N ) ) )
25 elfzelz 11449 . . . . . . . . . 10  |-  ( ( ( S `  C
) `  J )  e.  ( 1 ... ( M  +  N )
)  ->  ( ( S `  C ) `  J )  e.  ZZ )
2624, 25syl 16 . . . . . . . . 9  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) `  J )  e.  ZZ )
27 fzsubel 11490 . . . . . . . . 9  |-  ( ( ( 1  e.  ZZ  /\  ( I `  C
)  e.  ZZ )  /\  ( ( ( S `  C ) `
 J )  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( ( ( S `
 C ) `  J )  e.  ( 1 ... ( I `
 C ) )  <-> 
( ( ( S `
 C ) `  J )  -  1 )  e.  ( ( 1  -  1 ) ... ( ( I `
 C )  - 
1 ) ) ) )
2812, 17, 26, 12, 27syl22anc 1214 . . . . . . . 8  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( S `  C ) `
 J )  e.  ( 1 ... (
I `  C )
)  <->  ( ( ( S `  C ) `
 J )  - 
1 )  e.  ( ( 1  -  1 ) ... ( ( I `  C )  -  1 ) ) ) )
2910, 28mpbid 210 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( S `  C ) `
 J )  - 
1 )  e.  ( ( 1  -  1 ) ... ( ( I `  C )  -  1 ) ) )
30 1m1e0 10386 . . . . . . . 8  |-  ( 1  -  1 )  =  0
3130oveq1i 6100 . . . . . . 7  |-  ( ( 1  -  1 ) ... ( ( I `
 C )  - 
1 ) )  =  ( 0 ... (
( I `  C
)  -  1 ) )
3229, 31syl6eleq 2531 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( S `  C ) `
 J )  - 
1 )  e.  ( 0 ... ( ( I `  C )  -  1 ) ) )
3313simpld 456 . . . . . . . . . . 11  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  e.  ( 1 ... ( M  +  N )
) )
3433, 16syl 16 . . . . . . . . . 10  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  e.  ZZ )
3511a1i 11 . . . . . . . . . 10  |-  ( C  e.  ( O  \  E )  ->  1  e.  ZZ )
3634, 35zsubcld 10748 . . . . . . . . 9  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  -  1 )  e.  ZZ )
37 nnaddcl 10340 . . . . . . . . . . . 12  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  +  N
)  e.  NN )
381, 2, 37mp2an 667 . . . . . . . . . . 11  |-  ( M  +  N )  e.  NN
3938nnzi 10666 . . . . . . . . . 10  |-  ( M  +  N )  e.  ZZ
4039a1i 11 . . . . . . . . 9  |-  ( C  e.  ( O  \  E )  ->  ( M  +  N )  e.  ZZ )
41 elfzle2 11451 . . . . . . . . . . 11  |-  ( ( I `  C )  e.  ( 1 ... ( M  +  N
) )  ->  (
I `  C )  <_  ( M  +  N
) )
4233, 41syl 16 . . . . . . . . . 10  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  <_  ( M  +  N
) )
43 zlem1lt 10692 . . . . . . . . . . . 12  |-  ( ( ( I `  C
)  e.  ZZ  /\  ( M  +  N
)  e.  ZZ )  ->  ( ( I `
 C )  <_ 
( M  +  N
)  <->  ( ( I `
 C )  - 
1 )  <  ( M  +  N )
) )
4434, 40, 43syl2anc 656 . . . . . . . . . . 11  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  <_  ( M  +  N )  <->  ( (
I `  C )  -  1 )  < 
( M  +  N
) ) )
4536zred 10743 . . . . . . . . . . . 12  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  -  1 )  e.  RR )
4640zred 10743 . . . . . . . . . . . 12  |-  ( C  e.  ( O  \  E )  ->  ( M  +  N )  e.  RR )
47 ltle 9459 . . . . . . . . . . . 12  |-  ( ( ( ( I `  C )  -  1 )  e.  RR  /\  ( M  +  N
)  e.  RR )  ->  ( ( ( I `  C )  -  1 )  < 
( M  +  N
)  ->  ( (
I `  C )  -  1 )  <_ 
( M  +  N
) ) )
4845, 46, 47syl2anc 656 . . . . . . . . . . 11  |-  ( C  e.  ( O  \  E )  ->  (
( ( I `  C )  -  1 )  <  ( M  +  N )  -> 
( ( I `  C )  -  1 )  <_  ( M  +  N ) ) )
4944, 48sylbid 215 . . . . . . . . . 10  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  <_  ( M  +  N )  ->  (
( I `  C
)  -  1 )  <_  ( M  +  N ) ) )
5042, 49mpd 15 . . . . . . . . 9  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  -  1 )  <_  ( M  +  N ) )
51 eluz2 10863 . . . . . . . . 9  |-  ( ( M  +  N )  e.  ( ZZ>= `  (
( I `  C
)  -  1 ) )  <->  ( ( ( I `  C )  -  1 )  e.  ZZ  /\  ( M  +  N )  e.  ZZ  /\  ( ( I `  C )  -  1 )  <_ 
( M  +  N
) ) )
5236, 40, 50, 51syl3anbrc 1167 . . . . . . . 8  |-  ( C  e.  ( O  \  E )  ->  ( M  +  N )  e.  ( ZZ>= `  ( (
I `  C )  -  1 ) ) )
53 fzss2 11494 . . . . . . . 8  |-  ( ( M  +  N )  e.  ( ZZ>= `  (
( I `  C
)  -  1 ) )  ->  ( 0 ... ( ( I `
 C )  - 
1 ) )  C_  ( 0 ... ( M  +  N )
) )
5452, 53syl 16 . . . . . . 7  |-  ( C  e.  ( O  \  E )  ->  (
0 ... ( ( I `
 C )  - 
1 ) )  C_  ( 0 ... ( M  +  N )
) )
5554sselda 3353 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  ( ( ( S `
 C ) `  J )  -  1 )  e.  ( 0 ... ( ( I `
 C )  - 
1 ) ) )  ->  ( ( ( S `  C ) `
 J )  - 
1 )  e.  ( 0 ... ( M  +  N ) ) )
5632, 55syldan 467 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( S `  C ) `
 J )  - 
1 )  e.  ( 0 ... ( M  +  N ) ) )
57 ballotth.r . . . . . 6  |-  R  =  ( c  e.  ( O  \  E ) 
|->  ( ( S `  c ) " c
) )
58 ballotlemg . . . . . 6  |-  .^  =  ( u  e.  Fin ,  v  e.  Fin  |->  ( ( # `  (
v  i^i  u )
)  -  ( # `  ( v  \  u
) ) ) )
591, 2, 3, 4, 5, 6, 7, 8, 9, 57, 58ballotlemfg 26838 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  ( ( ( S `
 C ) `  J )  -  1 )  e.  ( 0 ... ( M  +  N ) ) )  ->  ( ( F `
 C ) `  ( ( ( S `
 C ) `  J )  -  1 ) )  =  ( C  .^  ( 1 ... ( ( ( S `  C ) `
 J )  - 
1 ) ) ) )
6056, 59syldan 467 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( F `
 C ) `  ( ( ( S `
 C ) `  J )  -  1 ) )  =  ( C  .^  ( 1 ... ( ( ( S `  C ) `
 J )  - 
1 ) ) ) )
611, 2, 3, 4, 5, 6, 7, 8, 9, 57, 58ballotlemfrc 26839 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( F `
 ( R `  C ) ) `  J )  =  ( C  .^  ( (
( S `  C
) `  J ) ... ( I `  C
) ) ) )
6260, 61oveq12d 6108 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( F `  C ) `
 ( ( ( S `  C ) `
 J )  - 
1 ) )  +  ( ( F `  ( R `  C ) ) `  J ) )  =  ( ( C  .^  ( 1 ... ( ( ( S `  C ) `
 J )  - 
1 ) ) )  +  ( C  .^  ( ( ( S `
 C ) `  J ) ... (
I `  C )
) ) ) )
63 fzsplit3 26011 . . . . . 6  |-  ( ( ( S `  C
) `  J )  e.  ( 1 ... (
I `  C )
)  ->  ( 1 ... ( I `  C ) )  =  ( ( 1 ... ( ( ( S `
 C ) `  J )  -  1 ) )  u.  (
( ( S `  C ) `  J
) ... ( I `  C ) ) ) )
6410, 63syl 16 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( 1 ... ( I `  C
) )  =  ( ( 1 ... (
( ( S `  C ) `  J
)  -  1 ) )  u.  ( ( ( S `  C
) `  J ) ... ( I `  C
) ) ) )
6564oveq2d 6106 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( C  .^  ( 1 ... (
I `  C )
) )  =  ( C  .^  ( (
1 ... ( ( ( S `  C ) `
 J )  - 
1 ) )  u.  ( ( ( S `
 C ) `  J ) ... (
I `  C )
) ) ) )
66 1nn0 10591 . . . . . . . . . 10  |-  1  e.  NN0
67 nn0uz 10891 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  0 )
6866, 67eleqtri 2513 . . . . . . . . 9  |-  1  e.  ( ZZ>= `  0 )
69 fzss1 11493 . . . . . . . . 9  |-  ( 1  e.  ( ZZ>= `  0
)  ->  ( 1 ... ( M  +  N ) )  C_  ( 0 ... ( M  +  N )
) )
7068, 69ax-mp 5 . . . . . . . 8  |-  ( 1 ... ( M  +  N ) )  C_  ( 0 ... ( M  +  N )
)
7170sseli 3349 . . . . . . 7  |-  ( ( I `  C )  e.  ( 1 ... ( M  +  N
) )  ->  (
I `  C )  e.  ( 0 ... ( M  +  N )
) )
721, 2, 3, 4, 5, 6, 7, 8, 9, 57, 58ballotlemfg 26838 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  ( I `  C
)  e.  ( 0 ... ( M  +  N ) ) )  ->  ( ( F `
 C ) `  ( I `  C
) )  =  ( C  .^  ( 1 ... ( I `  C ) ) ) )
7371, 72sylan2 471 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  ( I `  C
)  e.  ( 1 ... ( M  +  N ) ) )  ->  ( ( F `
 C ) `  ( I `  C
) )  =  ( C  .^  ( 1 ... ( I `  C ) ) ) )
7415, 73syldan 467 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( F `
 C ) `  ( I `  C
) )  =  ( C  .^  ( 1 ... ( I `  C ) ) ) )
7514simprd 460 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( F `
 C ) `  ( I `  C
) )  =  0 )
7674, 75eqtr3d 2475 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( C  .^  ( 1 ... (
I `  C )
) )  =  0 )
77 fzfi 11790 . . . . . . 7  |-  ( 1 ... ( M  +  N ) )  e. 
Fin
78 eldifi 3475 . . . . . . . 8  |-  ( C  e.  ( O  \  E )  ->  C  e.  O )
791, 2, 3ballotlemelo 26800 . . . . . . . . 9  |-  ( C  e.  O  <->  ( C  C_  ( 1 ... ( M  +  N )
)  /\  ( # `  C
)  =  M ) )
8079simplbi 457 . . . . . . . 8  |-  ( C  e.  O  ->  C  C_  ( 1 ... ( M  +  N )
) )
8178, 80syl 16 . . . . . . 7  |-  ( C  e.  ( O  \  E )  ->  C  C_  ( 1 ... ( M  +  N )
) )
82 ssfi 7529 . . . . . . 7  |-  ( ( ( 1 ... ( M  +  N )
)  e.  Fin  /\  C  C_  ( 1 ... ( M  +  N
) ) )  ->  C  e.  Fin )
8377, 81, 82sylancr 658 . . . . . 6  |-  ( C  e.  ( O  \  E )  ->  C  e.  Fin )
8483adantr 462 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  C  e.  Fin )
85 fzfid 11791 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( 1 ... ( ( ( S `
 C ) `  J )  -  1 ) )  e.  Fin )
86 fzfid 11791 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( S `  C ) `
 J ) ... ( I `  C
) )  e.  Fin )
8726zred 10743 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) `  J )  e.  RR )
88 ltm1 10165 . . . . . 6  |-  ( ( ( S `  C
) `  J )  e.  RR  ->  ( (
( S `  C
) `  J )  -  1 )  < 
( ( S `  C ) `  J
) )
89 fzdisj 11472 . . . . . 6  |-  ( ( ( ( S `  C ) `  J
)  -  1 )  <  ( ( S `
 C ) `  J )  ->  (
( 1 ... (
( ( S `  C ) `  J
)  -  1 ) )  i^i  ( ( ( S `  C
) `  J ) ... ( I `  C
) ) )  =  (/) )
9087, 88, 893syl 20 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( 1 ... ( ( ( S `  C ) `
 J )  - 
1 ) )  i^i  ( ( ( S `
 C ) `  J ) ... (
I `  C )
) )  =  (/) )
911, 2, 3, 4, 5, 6, 7, 8, 9, 57, 58, 84, 85, 86, 90ballotlemgun 26837 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( C  .^  ( ( 1 ... ( ( ( S `
 C ) `  J )  -  1 ) )  u.  (
( ( S `  C ) `  J
) ... ( I `  C ) ) ) )  =  ( ( C  .^  ( 1 ... ( ( ( S `  C ) `
 J )  - 
1 ) ) )  +  ( C  .^  ( ( ( S `
 C ) `  J ) ... (
I `  C )
) ) ) )
9265, 76, 913eqtr3rd 2482 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( C 
.^  ( 1 ... ( ( ( S `
 C ) `  J )  -  1 ) ) )  +  ( C  .^  (
( ( S `  C ) `  J
) ... ( I `  C ) ) ) )  =  0 )
9362, 92eqtrd 2473 . 2  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( F `  C ) `
 ( ( ( S `  C ) `
 J )  - 
1 ) )  +  ( ( F `  ( R `  C ) ) `  J ) )  =  0 )
9478adantr 462 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  C  e.  O
)
9526, 12zsubcld 10748 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( S `  C ) `
 J )  - 
1 )  e.  ZZ )
961, 2, 3, 4, 5, 94, 95ballotlemfelz 26803 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( F `
 C ) `  ( ( ( S `
 C ) `  J )  -  1 ) )  e.  ZZ )
9796zcnd 10744 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( F `
 C ) `  ( ( ( S `
 C ) `  J )  -  1 ) )  e.  CC )
981, 2, 3, 4, 5, 6, 7, 8, 9, 57ballotlemro 26835 . . . . . 6  |-  ( C  e.  ( O  \  E )  ->  ( R `  C )  e.  O )
9998adantr 462 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( R `  C )  e.  O
)
100 elfzelz 11449 . . . . . 6  |-  ( J  e.  ( 1 ... ( I `  C
) )  ->  J  e.  ZZ )
10121, 100syl 16 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  J  e.  ZZ )
1021, 2, 3, 4, 5, 99, 101ballotlemfelz 26803 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( F `
 ( R `  C ) ) `  J )  e.  ZZ )
103102zcnd 10744 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( F `
 ( R `  C ) ) `  J )  e.  CC )
104 addeq0 25970 . . 3  |-  ( ( ( ( F `  C ) `  (
( ( S `  C ) `  J
)  -  1 ) )  e.  CC  /\  ( ( F `  ( R `  C ) ) `  J )  e.  CC )  -> 
( ( ( ( F `  C ) `
 ( ( ( S `  C ) `
 J )  - 
1 ) )  +  ( ( F `  ( R `  C ) ) `  J ) )  =  0  <->  (
( F `  C
) `  ( (
( S `  C
) `  J )  -  1 ) )  =  -u ( ( F `
 ( R `  C ) ) `  J ) ) )
10597, 103, 104syl2anc 656 . 2  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( ( F `  C
) `  ( (
( S `  C
) `  J )  -  1 ) )  +  ( ( F `
 ( R `  C ) ) `  J ) )  =  0  <->  ( ( F `
 C ) `  ( ( ( S `
 C ) `  J )  -  1 ) )  =  -u ( ( F `  ( R `  C ) ) `  J ) ) )
10693, 105mpbid 210 1  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( F `
 C ) `  ( ( ( S `
 C ) `  J )  -  1 ) )  =  -u ( ( F `  ( R `  C ) ) `  J ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761   A.wral 2713   {crab 2717    \ cdif 3322    u. cun 3323    i^i cin 3324    C_ wss 3325   (/)c0 3634   ifcif 3788   ~Pcpw 3857   class class class wbr 4289    e. cmpt 4347   `'ccnv 4835   "cima 4839   ` cfv 5415  (class class class)co 6090    e. cmpt2 6092   Fincfn 7306   supcsup 7686   CCcc 9276   RRcr 9277   0cc0 9278   1c1 9279    + caddc 9281    < clt 9414    <_ cle 9415    - cmin 9591   -ucneg 9592    / cdiv 9989   NNcn 10318   NN0cn0 10575   ZZcz 10642   ZZ>=cuz 10857   ...cfz 11433   #chash 12099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-sup 7687  df-card 8105  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-n0 10576  df-z 10643  df-uz 10858  df-rp 10988  df-fz 11434  df-hash 12100
This theorem is referenced by:  ballotlemfrcn0  26842
  Copyright terms: Public domain W3C validator