Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfrc Structured version   Unicode version

Theorem ballotlemfrc 28290
Description: Express the value of  ( F `
 ( R `  C ) ) in terms of the newly defined  .^. (Contributed by Thierry Arnoux, 21-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotth.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
ballotth.e  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
ballotth.mgtn  |-  N  < 
M
ballotth.i  |-  I  =  ( c  e.  ( O  \  E ) 
|->  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  c
) `  k )  =  0 } ,  RR ,  `'  <  ) )
ballotth.s  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
ballotth.r  |-  R  =  ( c  e.  ( O  \  E ) 
|->  ( ( S `  c ) " c
) )
ballotlemg  |-  .^  =  ( u  e.  Fin ,  v  e.  Fin  |->  ( ( # `  (
v  i^i  u )
)  -  ( # `  ( v  \  u
) ) ) )
Assertion
Ref Expression
ballotlemfrc  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( F `
 ( R `  C ) ) `  J )  =  ( C  .^  ( (
( S `  C
) `  J ) ... ( I `  C
) ) ) )
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O    k, M    k, N    k, O    i, c, F, k    C, i, k    i, E, k    C, k    k, I, c    E, c    i, I, c    k, J    S, k, i, c    R, i   
v, u, C    u, I, v    u, J, v   
u, R, v    u, S, v    i, J
Allowed substitution hints:    C( x, c)    P( x, v, u, i, k, c)    R( x, k, c)    S( x)    E( x, v, u)    .^ ( x, v, u, i, k, c)    F( x, v, u)    I( x)    J( x, c)    M( x, v, u)    N( x, v, u)    O( x, v, u)

Proof of Theorem ballotlemfrc
StepHypRef Expression
1 ballotth.m . . . . . . . . 9  |-  M  e.  NN
2 ballotth.n . . . . . . . . 9  |-  N  e.  NN
3 ballotth.o . . . . . . . . 9  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
4 ballotth.p . . . . . . . . 9  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
5 ballotth.f . . . . . . . . 9  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
6 ballotth.e . . . . . . . . 9  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
7 ballotth.mgtn . . . . . . . . 9  |-  N  < 
M
8 ballotth.i . . . . . . . . 9  |-  I  =  ( c  e.  ( O  \  E ) 
|->  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  c
) `  k )  =  0 } ,  RR ,  `'  <  ) )
9 ballotth.s . . . . . . . . 9  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
101, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsf1o 28277 . . . . . . . 8  |-  ( C  e.  ( O  \  E )  ->  (
( S `  C
) : ( 1 ... ( M  +  N ) ) -1-1-onto-> ( 1 ... ( M  +  N ) )  /\  `' ( S `  C )  =  ( S `  C ) ) )
1110simpld 459 . . . . . . 7  |-  ( C  e.  ( O  \  E )  ->  ( S `  C ) : ( 1 ... ( M  +  N
) ) -1-1-onto-> ( 1 ... ( M  +  N )
) )
12 f1of1 5821 . . . . . . 7  |-  ( ( S `  C ) : ( 1 ... ( M  +  N
) ) -1-1-onto-> ( 1 ... ( M  +  N )
)  ->  ( S `  C ) : ( 1 ... ( M  +  N ) )
-1-1-> ( 1 ... ( M  +  N )
) )
1311, 12syl 16 . . . . . 6  |-  ( C  e.  ( O  \  E )  ->  ( S `  C ) : ( 1 ... ( M  +  N
) ) -1-1-> ( 1 ... ( M  +  N ) ) )
1413adantr 465 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( S `  C ) : ( 1 ... ( M  +  N ) )
-1-1-> ( 1 ... ( M  +  N )
) )
151, 2, 3, 4, 5, 6, 7, 8ballotlemiex 28265 . . . . . . . . . . 11  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  e.  ( 1 ... ( M  +  N ) )  /\  ( ( F `  C ) `  (
I `  C )
)  =  0 ) )
1615simpld 459 . . . . . . . . . 10  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  e.  ( 1 ... ( M  +  N )
) )
1716adantr 465 . . . . . . . . 9  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( I `  C )  e.  ( 1 ... ( M  +  N ) ) )
18 elfzuz3 11697 . . . . . . . . 9  |-  ( ( I `  C )  e.  ( 1 ... ( M  +  N
) )  ->  ( M  +  N )  e.  ( ZZ>= `  ( I `  C ) ) )
1917, 18syl 16 . . . . . . . 8  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( M  +  N )  e.  (
ZZ>= `  ( I `  C ) ) )
20 elfzuz3 11697 . . . . . . . . 9  |-  ( J  e.  ( 1 ... ( I `  C
) )  ->  (
I `  C )  e.  ( ZZ>= `  J )
)
2120adantl 466 . . . . . . . 8  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( I `  C )  e.  (
ZZ>= `  J ) )
22 uztrn 11110 . . . . . . . 8  |-  ( ( ( M  +  N
)  e.  ( ZZ>= `  ( I `  C
) )  /\  (
I `  C )  e.  ( ZZ>= `  J )
)  ->  ( M  +  N )  e.  (
ZZ>= `  J ) )
2319, 21, 22syl2anc 661 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( M  +  N )  e.  (
ZZ>= `  J ) )
24 fzss2 11735 . . . . . . 7  |-  ( ( M  +  N )  e.  ( ZZ>= `  J
)  ->  ( 1 ... J )  C_  ( 1 ... ( M  +  N )
) )
2523, 24syl 16 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( 1 ... J )  C_  (
1 ... ( M  +  N ) ) )
26 ssinss1 3731 . . . . . 6  |-  ( ( 1 ... J ) 
C_  ( 1 ... ( M  +  N
) )  ->  (
( 1 ... J
)  i^i  ( R `  C ) )  C_  ( 1 ... ( M  +  N )
) )
2725, 26syl 16 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( 1 ... J )  i^i  ( R `  C
) )  C_  (
1 ... ( M  +  N ) ) )
28 f1ores 5836 . . . . 5  |-  ( ( ( S `  C
) : ( 1 ... ( M  +  N ) ) -1-1-> ( 1 ... ( M  +  N ) )  /\  ( ( 1 ... J )  i^i  ( R `  C
) )  C_  (
1 ... ( M  +  N ) ) )  ->  ( ( S `
 C )  |`  ( ( 1 ... J )  i^i  ( R `  C )
) ) : ( ( 1 ... J
)  i^i  ( R `  C ) ) -1-1-onto-> ( ( S `  C )
" ( ( 1 ... J )  i^i  ( R `  C
) ) ) )
2914, 27, 28syl2anc 661 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C )  |`  ( ( 1 ... J )  i^i  ( R `  C )
) ) : ( ( 1 ... J
)  i^i  ( R `  C ) ) -1-1-onto-> ( ( S `  C )
" ( ( 1 ... J )  i^i  ( R `  C
) ) ) )
30 ovex 6320 . . . . . 6  |-  ( 1 ... J )  e. 
_V
3130inex1 4594 . . . . 5  |-  ( ( 1 ... J )  i^i  ( R `  C ) )  e. 
_V
3231f1oen 7548 . . . 4  |-  ( ( ( S `  C
)  |`  ( ( 1 ... J )  i^i  ( R `  C
) ) ) : ( ( 1 ... J )  i^i  ( R `  C )
)
-1-1-onto-> ( ( S `  C ) " (
( 1 ... J
)  i^i  ( R `  C ) ) )  ->  ( ( 1 ... J )  i^i  ( R `  C
) )  ~~  (
( S `  C
) " ( ( 1 ... J )  i^i  ( R `  C ) ) ) )
33 hasheni 12401 . . . 4  |-  ( ( ( 1 ... J
)  i^i  ( R `  C ) )  ~~  ( ( S `  C ) " (
( 1 ... J
)  i^i  ( R `  C ) ) )  ->  ( # `  (
( 1 ... J
)  i^i  ( R `  C ) ) )  =  ( # `  (
( S `  C
) " ( ( 1 ... J )  i^i  ( R `  C ) ) ) ) )
3429, 32, 333syl 20 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( # `  (
( 1 ... J
)  i^i  ( R `  C ) ) )  =  ( # `  (
( S `  C
) " ( ( 1 ... J )  i^i  ( R `  C ) ) ) ) )
3525ssdifssd 3647 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( 1 ... J )  \ 
( R `  C
) )  C_  (
1 ... ( M  +  N ) ) )
36 f1ores 5836 . . . . 5  |-  ( ( ( S `  C
) : ( 1 ... ( M  +  N ) ) -1-1-> ( 1 ... ( M  +  N ) )  /\  ( ( 1 ... J )  \ 
( R `  C
) )  C_  (
1 ... ( M  +  N ) ) )  ->  ( ( S `
 C )  |`  ( ( 1 ... J )  \  ( R `  C )
) ) : ( ( 1 ... J
)  \  ( R `  C ) ) -1-1-onto-> ( ( S `  C )
" ( ( 1 ... J )  \ 
( R `  C
) ) ) )
3714, 35, 36syl2anc 661 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C )  |`  ( ( 1 ... J )  \  ( R `  C )
) ) : ( ( 1 ... J
)  \  ( R `  C ) ) -1-1-onto-> ( ( S `  C )
" ( ( 1 ... J )  \ 
( R `  C
) ) ) )
38 difexg 4601 . . . . . 6  |-  ( ( 1 ... J )  e.  _V  ->  (
( 1 ... J
)  \  ( R `  C ) )  e. 
_V )
3930, 38ax-mp 5 . . . . 5  |-  ( ( 1 ... J ) 
\  ( R `  C ) )  e. 
_V
4039f1oen 7548 . . . 4  |-  ( ( ( S `  C
)  |`  ( ( 1 ... J )  \ 
( R `  C
) ) ) : ( ( 1 ... J )  \  ( R `  C )
)
-1-1-onto-> ( ( S `  C ) " (
( 1 ... J
)  \  ( R `  C ) ) )  ->  ( ( 1 ... J )  \ 
( R `  C
) )  ~~  (
( S `  C
) " ( ( 1 ... J ) 
\  ( R `  C ) ) ) )
41 hasheni 12401 . . . 4  |-  ( ( ( 1 ... J
)  \  ( R `  C ) )  ~~  ( ( S `  C ) " (
( 1 ... J
)  \  ( R `  C ) ) )  ->  ( # `  (
( 1 ... J
)  \  ( R `  C ) ) )  =  ( # `  (
( S `  C
) " ( ( 1 ... J ) 
\  ( R `  C ) ) ) ) )
4237, 40, 413syl 20 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( # `  (
( 1 ... J
)  \  ( R `  C ) ) )  =  ( # `  (
( S `  C
) " ( ( 1 ... J ) 
\  ( R `  C ) ) ) ) )
4334, 42oveq12d 6313 . 2  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( # `  ( ( 1 ... J )  i^i  ( R `  C )
) )  -  ( # `
 ( ( 1 ... J )  \ 
( R `  C
) ) ) )  =  ( ( # `  ( ( S `  C ) " (
( 1 ... J
)  i^i  ( R `  C ) ) ) )  -  ( # `  ( ( S `  C ) " (
( 1 ... J
)  \  ( R `  C ) ) ) ) ) )
44 ballotth.r . . . . 5  |-  R  =  ( c  e.  ( O  \  E ) 
|->  ( ( S `  c ) " c
) )
451, 2, 3, 4, 5, 6, 7, 8, 9, 44ballotlemro 28286 . . . 4  |-  ( C  e.  ( O  \  E )  ->  ( R `  C )  e.  O )
4645adantr 465 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( R `  C )  e.  O
)
47 elfzelz 11700 . . . 4  |-  ( J  e.  ( 1 ... ( I `  C
) )  ->  J  e.  ZZ )
4847adantl 466 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  J  e.  ZZ )
491, 2, 3, 4, 5, 46, 48ballotlemfval 28253 . 2  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( F `
 ( R `  C ) ) `  J )  =  ( ( # `  (
( 1 ... J
)  i^i  ( R `  C ) ) )  -  ( # `  (
( 1 ... J
)  \  ( R `  C ) ) ) ) )
50 fzfi 12062 . . . . 5  |-  ( 1 ... ( M  +  N ) )  e. 
Fin
51 eldifi 3631 . . . . . . 7  |-  ( C  e.  ( O  \  E )  ->  C  e.  O )
521, 2, 3ballotlemelo 28251 . . . . . . . 8  |-  ( C  e.  O  <->  ( C  C_  ( 1 ... ( M  +  N )
)  /\  ( # `  C
)  =  M ) )
5352simplbi 460 . . . . . . 7  |-  ( C  e.  O  ->  C  C_  ( 1 ... ( M  +  N )
) )
5451, 53syl 16 . . . . . 6  |-  ( C  e.  ( O  \  E )  ->  C  C_  ( 1 ... ( M  +  N )
) )
5554adantr 465 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  C  C_  (
1 ... ( M  +  N ) ) )
56 ssfi 7752 . . . . 5  |-  ( ( ( 1 ... ( M  +  N )
)  e.  Fin  /\  C  C_  ( 1 ... ( M  +  N
) ) )  ->  C  e.  Fin )
5750, 55, 56sylancr 663 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  C  e.  Fin )
58 fzfid 12063 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( S `  C ) `
 J ) ... ( I `  C
) )  e.  Fin )
59 ballotlemg . . . . 5  |-  .^  =  ( u  e.  Fin ,  v  e.  Fin  |->  ( ( # `  (
v  i^i  u )
)  -  ( # `  ( v  \  u
) ) ) )
601, 2, 3, 4, 5, 6, 7, 8, 9, 44, 59ballotlemgval 28287 . . . 4  |-  ( ( C  e.  Fin  /\  ( ( ( S `
 C ) `  J ) ... (
I `  C )
)  e.  Fin )  ->  ( C  .^  (
( ( S `  C ) `  J
) ... ( I `  C ) ) )  =  ( ( # `  ( ( ( ( S `  C ) `
 J ) ... ( I `  C
) )  i^i  C
) )  -  ( # `
 ( ( ( ( S `  C
) `  J ) ... ( I `  C
) )  \  C
) ) ) )
6157, 58, 60syl2anc 661 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( C  .^  ( ( ( S `
 C ) `  J ) ... (
I `  C )
) )  =  ( ( # `  (
( ( ( S `
 C ) `  J ) ... (
I `  C )
)  i^i  C )
)  -  ( # `  ( ( ( ( S `  C ) `
 J ) ... ( I `  C
) )  \  C
) ) ) )
62 dff1o3 5828 . . . . . . . . 9  |-  ( ( S `  C ) : ( 1 ... ( M  +  N
) ) -1-1-onto-> ( 1 ... ( M  +  N )
)  <->  ( ( S `
 C ) : ( 1 ... ( M  +  N )
) -onto-> ( 1 ... ( M  +  N
) )  /\  Fun  `' ( S `  C
) ) )
6362simprbi 464 . . . . . . . 8  |-  ( ( S `  C ) : ( 1 ... ( M  +  N
) ) -1-1-onto-> ( 1 ... ( M  +  N )
)  ->  Fun  `' ( S `  C ) )
64 imain 5670 . . . . . . . 8  |-  ( Fun  `' ( S `  C )  ->  (
( S `  C
) " ( ( 1 ... J )  i^i  ( R `  C ) ) )  =  ( ( ( S `  C )
" ( 1 ... J ) )  i^i  ( ( S `  C ) " ( R `  C )
) ) )
6511, 63, 643syl 20 . . . . . . 7  |-  ( C  e.  ( O  \  E )  ->  (
( S `  C
) " ( ( 1 ... J )  i^i  ( R `  C ) ) )  =  ( ( ( S `  C )
" ( 1 ... J ) )  i^i  ( ( S `  C ) " ( R `  C )
) ) )
6665adantr 465 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) "
( ( 1 ... J )  i^i  ( R `  C )
) )  =  ( ( ( S `  C ) " (
1 ... J ) )  i^i  ( ( S `
 C ) "
( R `  C
) ) ) )
671, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsima 28279 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) "
( 1 ... J
) )  =  ( ( ( S `  C ) `  J
) ... ( I `  C ) ) )
681, 2, 3, 4, 5, 6, 7, 8, 9, 44ballotlemscr 28282 . . . . . . . 8  |-  ( C  e.  ( O  \  E )  ->  (
( S `  C
) " ( R `
 C ) )  =  C )
6968adantr 465 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) "
( R `  C
) )  =  C )
7067, 69ineq12d 3706 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( S `  C )
" ( 1 ... J ) )  i^i  ( ( S `  C ) " ( R `  C )
) )  =  ( ( ( ( S `
 C ) `  J ) ... (
I `  C )
)  i^i  C )
)
7166, 70eqtrd 2508 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) "
( ( 1 ... J )  i^i  ( R `  C )
) )  =  ( ( ( ( S `
 C ) `  J ) ... (
I `  C )
)  i^i  C )
)
7271fveq2d 5876 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( # `  (
( S `  C
) " ( ( 1 ... J )  i^i  ( R `  C ) ) ) )  =  ( # `  ( ( ( ( S `  C ) `
 J ) ... ( I `  C
) )  i^i  C
) ) )
73 imadif 5669 . . . . . . . 8  |-  ( Fun  `' ( S `  C )  ->  (
( S `  C
) " ( ( 1 ... J ) 
\  ( R `  C ) ) )  =  ( ( ( S `  C )
" ( 1 ... J ) )  \ 
( ( S `  C ) " ( R `  C )
) ) )
7411, 63, 733syl 20 . . . . . . 7  |-  ( C  e.  ( O  \  E )  ->  (
( S `  C
) " ( ( 1 ... J ) 
\  ( R `  C ) ) )  =  ( ( ( S `  C )
" ( 1 ... J ) )  \ 
( ( S `  C ) " ( R `  C )
) ) )
7574adantr 465 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) "
( ( 1 ... J )  \  ( R `  C )
) )  =  ( ( ( S `  C ) " (
1 ... J ) ) 
\  ( ( S `
 C ) "
( R `  C
) ) ) )
7667, 69difeq12d 3628 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( S `  C )
" ( 1 ... J ) )  \ 
( ( S `  C ) " ( R `  C )
) )  =  ( ( ( ( S `
 C ) `  J ) ... (
I `  C )
)  \  C )
)
7775, 76eqtrd 2508 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) "
( ( 1 ... J )  \  ( R `  C )
) )  =  ( ( ( ( S `
 C ) `  J ) ... (
I `  C )
)  \  C )
)
7877fveq2d 5876 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( # `  (
( S `  C
) " ( ( 1 ... J ) 
\  ( R `  C ) ) ) )  =  ( # `  ( ( ( ( S `  C ) `
 J ) ... ( I `  C
) )  \  C
) ) )
7972, 78oveq12d 6313 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( # `  ( ( S `  C ) " (
( 1 ... J
)  i^i  ( R `  C ) ) ) )  -  ( # `  ( ( S `  C ) " (
( 1 ... J
)  \  ( R `  C ) ) ) ) )  =  ( ( # `  (
( ( ( S `
 C ) `  J ) ... (
I `  C )
)  i^i  C )
)  -  ( # `  ( ( ( ( S `  C ) `
 J ) ... ( I `  C
) )  \  C
) ) ) )
8061, 79eqtr4d 2511 . 2  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( C  .^  ( ( ( S `
 C ) `  J ) ... (
I `  C )
) )  =  ( ( # `  (
( S `  C
) " ( ( 1 ... J )  i^i  ( R `  C ) ) ) )  -  ( # `  ( ( S `  C ) " (
( 1 ... J
)  \  ( R `  C ) ) ) ) ) )
8143, 49, 803eqtr4d 2518 1  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( F `
 ( R `  C ) ) `  J )  =  ( C  .^  ( (
( S `  C
) `  J ) ... ( I `  C
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2817   {crab 2821   _Vcvv 3118    \ cdif 3478    i^i cin 3480    C_ wss 3481   ifcif 3945   ~Pcpw 4016   class class class wbr 4453    |-> cmpt 4511   `'ccnv 5004    |` cres 5007   "cima 5008   Fun wfun 5588   -1-1->wf1 5591   -onto->wfo 5592   -1-1-onto->wf1o 5593   ` cfv 5594  (class class class)co 6295    |-> cmpt2 6297    ~~ cen 7525   Fincfn 7528   supcsup 7912   RRcr 9503   0cc0 9504   1c1 9505    + caddc 9507    < clt 9640    <_ cle 9641    - cmin 9817    / cdiv 10218   NNcn 10548   ZZcz 10876   ZZ>=cuz 11094   ...cfz 11684   #chash 12385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-sup 7913  df-card 8332  df-cda 8560  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-2 10606  df-n0 10808  df-z 10877  df-uz 11095  df-rp 11233  df-fz 11685  df-hash 12386
This theorem is referenced by:  ballotlemfrci  28291  ballotlemfrceq  28292
  Copyright terms: Public domain W3C validator