Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfp1 Structured version   Visualization version   Unicode version

Theorem ballotlemfp1 29324
Description: If the  J th ballot is for A,  ( F `  C ) goes up 1. If the  J th ballot is for B,  ( F `  C ) goes down 1. (Contributed by Thierry Arnoux, 24-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotth.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
ballotlemfp1.c  |-  ( ph  ->  C  e.  O )
ballotlemfp1.j  |-  ( ph  ->  J  e.  NN )
Assertion
Ref Expression
ballotlemfp1  |-  ( ph  ->  ( ( -.  J  e.  C  ->  ( ( F `  C ) `
 J )  =  ( ( ( F `
 C ) `  ( J  -  1
) )  -  1 ) )  /\  ( J  e.  C  ->  ( ( F `  C
) `  J )  =  ( ( ( F `  C ) `
 ( J  - 
1 ) )  +  1 ) ) ) )
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O, c    F, c, i    C, i    i, J    ph, i
Allowed substitution hints:    ph( x, c)    C( x, c)    P( x, i, c)    F( x)    J( x, c)    M( x)    N( x)    O( x)

Proof of Theorem ballotlemfp1
StepHypRef Expression
1 ballotth.m . . . . . 6  |-  M  e.  NN
2 ballotth.n . . . . . 6  |-  N  e.  NN
3 ballotth.o . . . . . 6  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
4 ballotth.p . . . . . 6  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
5 ballotth.f . . . . . 6  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
6 ballotlemfp1.c . . . . . 6  |-  ( ph  ->  C  e.  O )
7 ballotlemfp1.j . . . . . . 7  |-  ( ph  ->  J  e.  NN )
87nnzd 11039 . . . . . 6  |-  ( ph  ->  J  e.  ZZ )
91, 2, 3, 4, 5, 6, 8ballotlemfval 29322 . . . . 5  |-  ( ph  ->  ( ( F `  C ) `  J
)  =  ( (
# `  ( (
1 ... J )  i^i 
C ) )  -  ( # `  ( ( 1 ... J ) 
\  C ) ) ) )
109adantr 467 . . . 4  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( F `  C
) `  J )  =  ( ( # `  ( ( 1 ... J )  i^i  C
) )  -  ( # `
 ( ( 1 ... J )  \  C ) ) ) )
11 elnnuz 11195 . . . . . . . . . 10  |-  ( J  e.  NN  <->  J  e.  ( ZZ>= `  1 )
)
127, 11sylib 200 . . . . . . . . 9  |-  ( ph  ->  J  e.  ( ZZ>= ` 
1 ) )
13 fzspl 28368 . . . . . . . . . . 11  |-  ( J  e.  ( ZZ>= `  1
)  ->  ( 1 ... J )  =  ( ( 1 ... ( J  -  1 ) )  u.  { J } ) )
1413ineq1d 3633 . . . . . . . . . 10  |-  ( J  e.  ( ZZ>= `  1
)  ->  ( (
1 ... J )  i^i 
C )  =  ( ( ( 1 ... ( J  -  1 ) )  u.  { J } )  i^i  C
) )
15 indir 3691 . . . . . . . . . 10  |-  ( ( ( 1 ... ( J  -  1 ) )  u.  { J } )  i^i  C
)  =  ( ( ( 1 ... ( J  -  1 ) )  i^i  C )  u.  ( { J }  i^i  C ) )
1614, 15syl6eq 2501 . . . . . . . . 9  |-  ( J  e.  ( ZZ>= `  1
)  ->  ( (
1 ... J )  i^i 
C )  =  ( ( ( 1 ... ( J  -  1 ) )  i^i  C
)  u.  ( { J }  i^i  C
) ) )
1712, 16syl 17 . . . . . . . 8  |-  ( ph  ->  ( ( 1 ... J )  i^i  C
)  =  ( ( ( 1 ... ( J  -  1 ) )  i^i  C )  u.  ( { J }  i^i  C ) ) )
1817adantr 467 . . . . . . 7  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( 1 ... J
)  i^i  C )  =  ( ( ( 1 ... ( J  -  1 ) )  i^i  C )  u.  ( { J }  i^i  C ) ) )
19 disjsn 4032 . . . . . . . . . . 11  |-  ( ( C  i^i  { J } )  =  (/)  <->  -.  J  e.  C )
20 incom 3625 . . . . . . . . . . . 12  |-  ( C  i^i  { J }
)  =  ( { J }  i^i  C
)
2120eqeq1i 2456 . . . . . . . . . . 11  |-  ( ( C  i^i  { J } )  =  (/)  <->  ( { J }  i^i  C
)  =  (/) )
2219, 21bitr3i 255 . . . . . . . . . 10  |-  ( -.  J  e.  C  <->  ( { J }  i^i  C )  =  (/) )
2322biimpi 198 . . . . . . . . 9  |-  ( -.  J  e.  C  -> 
( { J }  i^i  C )  =  (/) )
2423adantl 468 . . . . . . . 8  |-  ( (
ph  /\  -.  J  e.  C )  ->  ( { J }  i^i  C
)  =  (/) )
2524uneq2d 3588 . . . . . . 7  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( ( 1 ... ( J  -  1 ) )  i^i  C
)  u.  ( { J }  i^i  C
) )  =  ( ( ( 1 ... ( J  -  1 ) )  i^i  C
)  u.  (/) ) )
26 un0 3759 . . . . . . . 8  |-  ( ( ( 1 ... ( J  -  1 ) )  i^i  C )  u.  (/) )  =  ( ( 1 ... ( J  -  1 ) )  i^i  C )
2726a1i 11 . . . . . . 7  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( ( 1 ... ( J  -  1 ) )  i^i  C
)  u.  (/) )  =  ( ( 1 ... ( J  -  1 ) )  i^i  C
) )
2818, 25, 273eqtrd 2489 . . . . . 6  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( 1 ... J
)  i^i  C )  =  ( ( 1 ... ( J  - 
1 ) )  i^i 
C ) )
2928fveq2d 5869 . . . . 5  |-  ( (
ph  /\  -.  J  e.  C )  ->  ( # `
 ( ( 1 ... J )  i^i 
C ) )  =  ( # `  (
( 1 ... ( J  -  1 ) )  i^i  C ) ) )
3013difeq1d 3550 . . . . . . . . . 10  |-  ( J  e.  ( ZZ>= `  1
)  ->  ( (
1 ... J )  \  C )  =  ( ( ( 1 ... ( J  -  1 ) )  u.  { J } )  \  C
) )
31 difundir 3696 . . . . . . . . . 10  |-  ( ( ( 1 ... ( J  -  1 ) )  u.  { J } )  \  C
)  =  ( ( ( 1 ... ( J  -  1 ) )  \  C )  u.  ( { J }  \  C ) )
3230, 31syl6eq 2501 . . . . . . . . 9  |-  ( J  e.  ( ZZ>= `  1
)  ->  ( (
1 ... J )  \  C )  =  ( ( ( 1 ... ( J  -  1 ) )  \  C
)  u.  ( { J }  \  C
) ) )
3312, 32syl 17 . . . . . . . 8  |-  ( ph  ->  ( ( 1 ... J )  \  C
)  =  ( ( ( 1 ... ( J  -  1 ) )  \  C )  u.  ( { J }  \  C ) ) )
34 disj3 3809 . . . . . . . . . . 11  |-  ( ( { J }  i^i  C )  =  (/)  <->  { J }  =  ( { J }  \  C ) )
3523, 34sylib 200 . . . . . . . . . 10  |-  ( -.  J  e.  C  ->  { J }  =  ( { J }  \  C ) )
3635eqcomd 2457 . . . . . . . . 9  |-  ( -.  J  e.  C  -> 
( { J }  \  C )  =  { J } )
3736uneq2d 3588 . . . . . . . 8  |-  ( -.  J  e.  C  -> 
( ( ( 1 ... ( J  - 
1 ) )  \  C )  u.  ( { J }  \  C
) )  =  ( ( ( 1 ... ( J  -  1 ) )  \  C
)  u.  { J } ) )
3833, 37sylan9eq 2505 . . . . . . 7  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( 1 ... J
)  \  C )  =  ( ( ( 1 ... ( J  -  1 ) ) 
\  C )  u. 
{ J } ) )
3938fveq2d 5869 . . . . . 6  |-  ( (
ph  /\  -.  J  e.  C )  ->  ( # `
 ( ( 1 ... J )  \  C ) )  =  ( # `  (
( ( 1 ... ( J  -  1 ) )  \  C
)  u.  { J } ) ) )
408adantr 467 . . . . . . 7  |-  ( (
ph  /\  -.  J  e.  C )  ->  J  e.  ZZ )
41 uzid 11173 . . . . . . . . . . 11  |-  ( J  e.  ZZ  ->  J  e.  ( ZZ>= `  J )
)
42 uznfz 11877 . . . . . . . . . . 11  |-  ( J  e.  ( ZZ>= `  J
)  ->  -.  J  e.  ( 1 ... ( J  -  1 ) ) )
438, 41, 423syl 18 . . . . . . . . . 10  |-  ( ph  ->  -.  J  e.  ( 1 ... ( J  -  1 ) ) )
4443adantr 467 . . . . . . . . 9  |-  ( (
ph  /\  -.  J  e.  C )  ->  -.  J  e.  ( 1 ... ( J  - 
1 ) ) )
45 difss 3560 . . . . . . . . . 10  |-  ( ( 1 ... ( J  -  1 ) ) 
\  C )  C_  ( 1 ... ( J  -  1 ) )
4645sseli 3428 . . . . . . . . 9  |-  ( J  e.  ( ( 1 ... ( J  - 
1 ) )  \  C )  ->  J  e.  ( 1 ... ( J  -  1 ) ) )
4744, 46nsyl 125 . . . . . . . 8  |-  ( (
ph  /\  -.  J  e.  C )  ->  -.  J  e.  ( (
1 ... ( J  - 
1 ) )  \  C ) )
48 fzfi 12185 . . . . . . . . 9  |-  ( 1 ... ( J  - 
1 ) )  e. 
Fin
49 ssfi 7792 . . . . . . . . 9  |-  ( ( ( 1 ... ( J  -  1 ) )  e.  Fin  /\  ( ( 1 ... ( J  -  1 ) )  \  C
)  C_  ( 1 ... ( J  - 
1 ) ) )  ->  ( ( 1 ... ( J  - 
1 ) )  \  C )  e.  Fin )
5048, 45, 49mp2an 678 . . . . . . . 8  |-  ( ( 1 ... ( J  -  1 ) ) 
\  C )  e. 
Fin
5147, 50jctil 540 . . . . . . 7  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( ( 1 ... ( J  -  1 ) )  \  C
)  e.  Fin  /\  -.  J  e.  (
( 1 ... ( J  -  1 ) )  \  C ) ) )
52 hashunsng 12571 . . . . . . 7  |-  ( J  e.  ZZ  ->  (
( ( ( 1 ... ( J  - 
1 ) )  \  C )  e.  Fin  /\ 
-.  J  e.  ( ( 1 ... ( J  -  1 ) )  \  C ) )  ->  ( # `  (
( ( 1 ... ( J  -  1 ) )  \  C
)  u.  { J } ) )  =  ( ( # `  (
( 1 ... ( J  -  1 ) )  \  C ) )  +  1 ) ) )
5340, 51, 52sylc 62 . . . . . 6  |-  ( (
ph  /\  -.  J  e.  C )  ->  ( # `
 ( ( ( 1 ... ( J  -  1 ) ) 
\  C )  u. 
{ J } ) )  =  ( (
# `  ( (
1 ... ( J  - 
1 ) )  \  C ) )  +  1 ) )
5439, 53eqtrd 2485 . . . . 5  |-  ( (
ph  /\  -.  J  e.  C )  ->  ( # `
 ( ( 1 ... J )  \  C ) )  =  ( ( # `  (
( 1 ... ( J  -  1 ) )  \  C ) )  +  1 ) )
5529, 54oveq12d 6308 . . . 4  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( # `  ( ( 1 ... J )  i^i  C ) )  -  ( # `  (
( 1 ... J
)  \  C )
) )  =  ( ( # `  (
( 1 ... ( J  -  1 ) )  i^i  C ) )  -  ( (
# `  ( (
1 ... ( J  - 
1 ) )  \  C ) )  +  1 ) ) )
56 1zzd 10968 . . . . . . . . 9  |-  ( ph  ->  1  e.  ZZ )
578, 56zsubcld 11045 . . . . . . . 8  |-  ( ph  ->  ( J  -  1 )  e.  ZZ )
581, 2, 3, 4, 5, 6, 57ballotlemfval 29322 . . . . . . 7  |-  ( ph  ->  ( ( F `  C ) `  ( J  -  1 ) )  =  ( (
# `  ( (
1 ... ( J  - 
1 ) )  i^i 
C ) )  -  ( # `  ( ( 1 ... ( J  -  1 ) ) 
\  C ) ) ) )
5958adantr 467 . . . . . 6  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( F `  C
) `  ( J  -  1 ) )  =  ( ( # `  ( ( 1 ... ( J  -  1 ) )  i^i  C
) )  -  ( # `
 ( ( 1 ... ( J  - 
1 ) )  \  C ) ) ) )
6059oveq1d 6305 . . . . 5  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( ( F `  C ) `  ( J  -  1 ) )  -  1 )  =  ( ( (
# `  ( (
1 ... ( J  - 
1 ) )  i^i 
C ) )  -  ( # `  ( ( 1 ... ( J  -  1 ) ) 
\  C ) ) )  -  1 ) )
61 inss1 3652 . . . . . . . . . 10  |-  ( ( 1 ... ( J  -  1 ) )  i^i  C )  C_  ( 1 ... ( J  -  1 ) )
62 ssfi 7792 . . . . . . . . . 10  |-  ( ( ( 1 ... ( J  -  1 ) )  e.  Fin  /\  ( ( 1 ... ( J  -  1 ) )  i^i  C
)  C_  ( 1 ... ( J  - 
1 ) ) )  ->  ( ( 1 ... ( J  - 
1 ) )  i^i 
C )  e.  Fin )
6348, 61, 62mp2an 678 . . . . . . . . 9  |-  ( ( 1 ... ( J  -  1 ) )  i^i  C )  e. 
Fin
64 hashcl 12538 . . . . . . . . 9  |-  ( ( ( 1 ... ( J  -  1 ) )  i^i  C )  e.  Fin  ->  ( # `
 ( ( 1 ... ( J  - 
1 ) )  i^i 
C ) )  e. 
NN0 )
6563, 64ax-mp 5 . . . . . . . 8  |-  ( # `  ( ( 1 ... ( J  -  1 ) )  i^i  C
) )  e.  NN0
6665nn0cni 10881 . . . . . . 7  |-  ( # `  ( ( 1 ... ( J  -  1 ) )  i^i  C
) )  e.  CC
6766a1i 11 . . . . . 6  |-  ( (
ph  /\  -.  J  e.  C )  ->  ( # `
 ( ( 1 ... ( J  - 
1 ) )  i^i 
C ) )  e.  CC )
68 diffi 7803 . . . . . . . . . 10  |-  ( ( 1 ... ( J  -  1 ) )  e.  Fin  ->  (
( 1 ... ( J  -  1 ) )  \  C )  e.  Fin )
6948, 68ax-mp 5 . . . . . . . . 9  |-  ( ( 1 ... ( J  -  1 ) ) 
\  C )  e. 
Fin
70 hashcl 12538 . . . . . . . . 9  |-  ( ( ( 1 ... ( J  -  1 ) )  \  C )  e.  Fin  ->  ( # `
 ( ( 1 ... ( J  - 
1 ) )  \  C ) )  e. 
NN0 )
7169, 70ax-mp 5 . . . . . . . 8  |-  ( # `  ( ( 1 ... ( J  -  1 ) )  \  C
) )  e.  NN0
7271nn0cni 10881 . . . . . . 7  |-  ( # `  ( ( 1 ... ( J  -  1 ) )  \  C
) )  e.  CC
7372a1i 11 . . . . . 6  |-  ( (
ph  /\  -.  J  e.  C )  ->  ( # `
 ( ( 1 ... ( J  - 
1 ) )  \  C ) )  e.  CC )
74 1cnd 9659 . . . . . 6  |-  ( (
ph  /\  -.  J  e.  C )  ->  1  e.  CC )
7567, 73, 74subsub4d 10017 . . . . 5  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( ( # `  (
( 1 ... ( J  -  1 ) )  i^i  C ) )  -  ( # `  ( ( 1 ... ( J  -  1 ) )  \  C
) ) )  - 
1 )  =  ( ( # `  (
( 1 ... ( J  -  1 ) )  i^i  C ) )  -  ( (
# `  ( (
1 ... ( J  - 
1 ) )  \  C ) )  +  1 ) ) )
7660, 75eqtr2d 2486 . . . 4  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( # `  ( ( 1 ... ( J  -  1 ) )  i^i  C ) )  -  ( ( # `  ( ( 1 ... ( J  -  1 ) )  \  C
) )  +  1 ) )  =  ( ( ( F `  C ) `  ( J  -  1 ) )  -  1 ) )
7710, 55, 763eqtrd 2489 . . 3  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( F `  C
) `  J )  =  ( ( ( F `  C ) `
 ( J  - 
1 ) )  - 
1 ) )
7877ex 436 . 2  |-  ( ph  ->  ( -.  J  e.  C  ->  ( ( F `  C ) `  J )  =  ( ( ( F `  C ) `  ( J  -  1 ) )  -  1 ) ) )
799adantr 467 . . . 4  |-  ( (
ph  /\  J  e.  C )  ->  (
( F `  C
) `  J )  =  ( ( # `  ( ( 1 ... J )  i^i  C
) )  -  ( # `
 ( ( 1 ... J )  \  C ) ) ) )
8017fveq2d 5869 . . . . . . 7  |-  ( ph  ->  ( # `  (
( 1 ... J
)  i^i  C )
)  =  ( # `  ( ( ( 1 ... ( J  - 
1 ) )  i^i 
C )  u.  ( { J }  i^i  C
) ) ) )
8180adantr 467 . . . . . 6  |-  ( (
ph  /\  J  e.  C )  ->  ( # `
 ( ( 1 ... J )  i^i 
C ) )  =  ( # `  (
( ( 1 ... ( J  -  1 ) )  i^i  C
)  u.  ( { J }  i^i  C
) ) ) )
82 snssi 4116 . . . . . . . . . 10  |-  ( J  e.  C  ->  { J }  C_  C )
83 df-ss 3418 . . . . . . . . . 10  |-  ( { J }  C_  C  <->  ( { J }  i^i  C )  =  { J } )
8482, 83sylib 200 . . . . . . . . 9  |-  ( J  e.  C  ->  ( { J }  i^i  C
)  =  { J } )
8584uneq2d 3588 . . . . . . . 8  |-  ( J  e.  C  ->  (
( ( 1 ... ( J  -  1 ) )  i^i  C
)  u.  ( { J }  i^i  C
) )  =  ( ( ( 1 ... ( J  -  1 ) )  i^i  C
)  u.  { J } ) )
8685fveq2d 5869 . . . . . . 7  |-  ( J  e.  C  ->  ( # `
 ( ( ( 1 ... ( J  -  1 ) )  i^i  C )  u.  ( { J }  i^i  C ) ) )  =  ( # `  (
( ( 1 ... ( J  -  1 ) )  i^i  C
)  u.  { J } ) ) )
8786adantl 468 . . . . . 6  |-  ( (
ph  /\  J  e.  C )  ->  ( # `
 ( ( ( 1 ... ( J  -  1 ) )  i^i  C )  u.  ( { J }  i^i  C ) ) )  =  ( # `  (
( ( 1 ... ( J  -  1 ) )  i^i  C
)  u.  { J } ) ) )
88 simpr 463 . . . . . . 7  |-  ( (
ph  /\  J  e.  C )  ->  J  e.  C )
898adantr 467 . . . . . . . . . 10  |-  ( (
ph  /\  J  e.  C )  ->  J  e.  ZZ )
9089, 41, 423syl 18 . . . . . . . . 9  |-  ( (
ph  /\  J  e.  C )  ->  -.  J  e.  ( 1 ... ( J  - 
1 ) ) )
9161sseli 3428 . . . . . . . . 9  |-  ( J  e.  ( ( 1 ... ( J  - 
1 ) )  i^i 
C )  ->  J  e.  ( 1 ... ( J  -  1 ) ) )
9290, 91nsyl 125 . . . . . . . 8  |-  ( (
ph  /\  J  e.  C )  ->  -.  J  e.  ( (
1 ... ( J  - 
1 ) )  i^i 
C ) )
9392, 63jctil 540 . . . . . . 7  |-  ( (
ph  /\  J  e.  C )  ->  (
( ( 1 ... ( J  -  1 ) )  i^i  C
)  e.  Fin  /\  -.  J  e.  (
( 1 ... ( J  -  1 ) )  i^i  C ) ) )
94 hashunsng 12571 . . . . . . 7  |-  ( J  e.  C  ->  (
( ( ( 1 ... ( J  - 
1 ) )  i^i 
C )  e.  Fin  /\ 
-.  J  e.  ( ( 1 ... ( J  -  1 ) )  i^i  C ) )  ->  ( # `  (
( ( 1 ... ( J  -  1 ) )  i^i  C
)  u.  { J } ) )  =  ( ( # `  (
( 1 ... ( J  -  1 ) )  i^i  C ) )  +  1 ) ) )
9588, 93, 94sylc 62 . . . . . 6  |-  ( (
ph  /\  J  e.  C )  ->  ( # `
 ( ( ( 1 ... ( J  -  1 ) )  i^i  C )  u. 
{ J } ) )  =  ( (
# `  ( (
1 ... ( J  - 
1 ) )  i^i 
C ) )  +  1 ) )
9681, 87, 953eqtrd 2489 . . . . 5  |-  ( (
ph  /\  J  e.  C )  ->  ( # `
 ( ( 1 ... J )  i^i 
C ) )  =  ( ( # `  (
( 1 ... ( J  -  1 ) )  i^i  C ) )  +  1 ) )
9733fveq2d 5869 . . . . . . 7  |-  ( ph  ->  ( # `  (
( 1 ... J
)  \  C )
)  =  ( # `  ( ( ( 1 ... ( J  - 
1 ) )  \  C )  u.  ( { J }  \  C
) ) ) )
9897adantr 467 . . . . . 6  |-  ( (
ph  /\  J  e.  C )  ->  ( # `
 ( ( 1 ... J )  \  C ) )  =  ( # `  (
( ( 1 ... ( J  -  1 ) )  \  C
)  u.  ( { J }  \  C
) ) ) )
99 difin2 3705 . . . . . . . . . . 11  |-  ( { J }  C_  C  ->  ( { J }  \  C )  =  ( ( C  \  C
)  i^i  { J } ) )
100 difid 3835 . . . . . . . . . . . . 13  |-  ( C 
\  C )  =  (/)
101100ineq1i 3630 . . . . . . . . . . . 12  |-  ( ( C  \  C )  i^i  { J }
)  =  ( (/)  i^i 
{ J } )
102 incom 3625 . . . . . . . . . . . 12  |-  ( (/)  i^i 
{ J } )  =  ( { J }  i^i  (/) )
103 in0 3760 . . . . . . . . . . . 12  |-  ( { J }  i^i  (/) )  =  (/)
104101, 102, 1033eqtri 2477 . . . . . . . . . . 11  |-  ( ( C  \  C )  i^i  { J }
)  =  (/)
10599, 104syl6eq 2501 . . . . . . . . . 10  |-  ( { J }  C_  C  ->  ( { J }  \  C )  =  (/) )
10682, 105syl 17 . . . . . . . . 9  |-  ( J  e.  C  ->  ( { J }  \  C
)  =  (/) )
107106uneq2d 3588 . . . . . . . 8  |-  ( J  e.  C  ->  (
( ( 1 ... ( J  -  1 ) )  \  C
)  u.  ( { J }  \  C
) )  =  ( ( ( 1 ... ( J  -  1 ) )  \  C
)  u.  (/) ) )
108107fveq2d 5869 . . . . . . 7  |-  ( J  e.  C  ->  ( # `
 ( ( ( 1 ... ( J  -  1 ) ) 
\  C )  u.  ( { J }  \  C ) ) )  =  ( # `  (
( ( 1 ... ( J  -  1 ) )  \  C
)  u.  (/) ) ) )
109108adantl 468 . . . . . 6  |-  ( (
ph  /\  J  e.  C )  ->  ( # `
 ( ( ( 1 ... ( J  -  1 ) ) 
\  C )  u.  ( { J }  \  C ) ) )  =  ( # `  (
( ( 1 ... ( J  -  1 ) )  \  C
)  u.  (/) ) ) )
110 un0 3759 . . . . . . . 8  |-  ( ( ( 1 ... ( J  -  1 ) )  \  C )  u.  (/) )  =  ( ( 1 ... ( J  -  1 ) )  \  C )
111110a1i 11 . . . . . . 7  |-  ( (
ph  /\  J  e.  C )  ->  (
( ( 1 ... ( J  -  1 ) )  \  C
)  u.  (/) )  =  ( ( 1 ... ( J  -  1 ) )  \  C
) )
112111fveq2d 5869 . . . . . 6  |-  ( (
ph  /\  J  e.  C )  ->  ( # `
 ( ( ( 1 ... ( J  -  1 ) ) 
\  C )  u.  (/) ) )  =  (
# `  ( (
1 ... ( J  - 
1 ) )  \  C ) ) )
11398, 109, 1123eqtrd 2489 . . . . 5  |-  ( (
ph  /\  J  e.  C )  ->  ( # `
 ( ( 1 ... J )  \  C ) )  =  ( # `  (
( 1 ... ( J  -  1 ) )  \  C ) ) )
11496, 113oveq12d 6308 . . . 4  |-  ( (
ph  /\  J  e.  C )  ->  (
( # `  ( ( 1 ... J )  i^i  C ) )  -  ( # `  (
( 1 ... J
)  \  C )
) )  =  ( ( ( # `  (
( 1 ... ( J  -  1 ) )  i^i  C ) )  +  1 )  -  ( # `  (
( 1 ... ( J  -  1 ) )  \  C ) ) ) )
11566a1i 11 . . . . . 6  |-  ( (
ph  /\  J  e.  C )  ->  ( # `
 ( ( 1 ... ( J  - 
1 ) )  i^i 
C ) )  e.  CC )
116 1cnd 9659 . . . . . 6  |-  ( (
ph  /\  J  e.  C )  ->  1  e.  CC )
11772a1i 11 . . . . . 6  |-  ( (
ph  /\  J  e.  C )  ->  ( # `
 ( ( 1 ... ( J  - 
1 ) )  \  C ) )  e.  CC )
118115, 116, 117addsubd 10007 . . . . 5  |-  ( (
ph  /\  J  e.  C )  ->  (
( ( # `  (
( 1 ... ( J  -  1 ) )  i^i  C ) )  +  1 )  -  ( # `  (
( 1 ... ( J  -  1 ) )  \  C ) ) )  =  ( ( ( # `  (
( 1 ... ( J  -  1 ) )  i^i  C ) )  -  ( # `  ( ( 1 ... ( J  -  1 ) )  \  C
) ) )  +  1 ) )
11958adantr 467 . . . . . 6  |-  ( (
ph  /\  J  e.  C )  ->  (
( F `  C
) `  ( J  -  1 ) )  =  ( ( # `  ( ( 1 ... ( J  -  1 ) )  i^i  C
) )  -  ( # `
 ( ( 1 ... ( J  - 
1 ) )  \  C ) ) ) )
120119oveq1d 6305 . . . . 5  |-  ( (
ph  /\  J  e.  C )  ->  (
( ( F `  C ) `  ( J  -  1 ) )  +  1 )  =  ( ( (
# `  ( (
1 ... ( J  - 
1 ) )  i^i 
C ) )  -  ( # `  ( ( 1 ... ( J  -  1 ) ) 
\  C ) ) )  +  1 ) )
121118, 120eqtr4d 2488 . . . 4  |-  ( (
ph  /\  J  e.  C )  ->  (
( ( # `  (
( 1 ... ( J  -  1 ) )  i^i  C ) )  +  1 )  -  ( # `  (
( 1 ... ( J  -  1 ) )  \  C ) ) )  =  ( ( ( F `  C ) `  ( J  -  1 ) )  +  1 ) )
12279, 114, 1213eqtrd 2489 . . 3  |-  ( (
ph  /\  J  e.  C )  ->  (
( F `  C
) `  J )  =  ( ( ( F `  C ) `
 ( J  - 
1 ) )  +  1 ) )
123122ex 436 . 2  |-  ( ph  ->  ( J  e.  C  ->  ( ( F `  C ) `  J
)  =  ( ( ( F `  C
) `  ( J  -  1 ) )  +  1 ) ) )
12478, 123jca 535 1  |-  ( ph  ->  ( ( -.  J  e.  C  ->  ( ( F `  C ) `
 J )  =  ( ( ( F `
 C ) `  ( J  -  1
) )  -  1 ) )  /\  ( J  e.  C  ->  ( ( F `  C
) `  J )  =  ( ( ( F `  C ) `
 ( J  - 
1 ) )  +  1 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 371    = wceq 1444    e. wcel 1887   {crab 2741    \ cdif 3401    u. cun 3402    i^i cin 3403    C_ wss 3404   (/)c0 3731   ~Pcpw 3951   {csn 3968    |-> cmpt 4461   ` cfv 5582  (class class class)co 6290   Fincfn 7569   CCcc 9537   1c1 9540    + caddc 9542    - cmin 9860    / cdiv 10269   NNcn 10609   NN0cn0 10869   ZZcz 10937   ZZ>=cuz 11159   ...cfz 11784   #chash 12515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-oadd 7186  df-er 7363  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-card 8373  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-nn 10610  df-n0 10870  df-z 10938  df-uz 11160  df-fz 11785  df-hash 12516
This theorem is referenced by:  ballotlemfc0  29325  ballotlemfcc  29326  ballotlem4  29331  ballotlemi1  29335  ballotlemii  29336  ballotlemic  29339  ballotlem1c  29340  ballotlemi1OLD  29373  ballotlemiiOLD  29374  ballotlemicOLD  29377  ballotlem1cOLD  29378
  Copyright terms: Public domain W3C validator