Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfp1 Structured version   Unicode version

Theorem ballotlemfp1 28181
Description: If the  J th ballot is for A,  ( F `  C ) goes up 1. If the  J th ballot is for B,  ( F `  C ) goes down 1. (Contributed by Thierry Arnoux, 24-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotth.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
ballotlemfp1.c  |-  ( ph  ->  C  e.  O )
ballotlemfp1.j  |-  ( ph  ->  J  e.  NN )
Assertion
Ref Expression
ballotlemfp1  |-  ( ph  ->  ( ( -.  J  e.  C  ->  ( ( F `  C ) `
 J )  =  ( ( ( F `
 C ) `  ( J  -  1
) )  -  1 ) )  /\  ( J  e.  C  ->  ( ( F `  C
) `  J )  =  ( ( ( F `  C ) `
 ( J  - 
1 ) )  +  1 ) ) ) )
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O, c    F, c, i    C, i    i, J    ph, i
Allowed substitution hints:    ph( x, c)    C( x, c)    P( x, i, c)    F( x)    J( x, c)    M( x)    N( x)    O( x)

Proof of Theorem ballotlemfp1
StepHypRef Expression
1 ballotth.m . . . . . 6  |-  M  e.  NN
2 ballotth.n . . . . . 6  |-  N  e.  NN
3 ballotth.o . . . . . 6  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
4 ballotth.p . . . . . 6  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
5 ballotth.f . . . . . 6  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
6 ballotlemfp1.c . . . . . 6  |-  ( ph  ->  C  e.  O )
7 ballotlemfp1.j . . . . . . 7  |-  ( ph  ->  J  e.  NN )
87nnzd 10966 . . . . . 6  |-  ( ph  ->  J  e.  ZZ )
91, 2, 3, 4, 5, 6, 8ballotlemfval 28179 . . . . 5  |-  ( ph  ->  ( ( F `  C ) `  J
)  =  ( (
# `  ( (
1 ... J )  i^i 
C ) )  -  ( # `  ( ( 1 ... J ) 
\  C ) ) ) )
109adantr 465 . . . 4  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( F `  C
) `  J )  =  ( ( # `  ( ( 1 ... J )  i^i  C
) )  -  ( # `
 ( ( 1 ... J )  \  C ) ) ) )
11 elnnuz 11119 . . . . . . . . . 10  |-  ( J  e.  NN  <->  J  e.  ( ZZ>= `  1 )
)
127, 11sylib 196 . . . . . . . . 9  |-  ( ph  ->  J  e.  ( ZZ>= ` 
1 ) )
13 fzspl 27363 . . . . . . . . . . 11  |-  ( J  e.  ( ZZ>= `  1
)  ->  ( 1 ... J )  =  ( ( 1 ... ( J  -  1 ) )  u.  { J } ) )
1413ineq1d 3699 . . . . . . . . . 10  |-  ( J  e.  ( ZZ>= `  1
)  ->  ( (
1 ... J )  i^i 
C )  =  ( ( ( 1 ... ( J  -  1 ) )  u.  { J } )  i^i  C
) )
15 indir 3746 . . . . . . . . . 10  |-  ( ( ( 1 ... ( J  -  1 ) )  u.  { J } )  i^i  C
)  =  ( ( ( 1 ... ( J  -  1 ) )  i^i  C )  u.  ( { J }  i^i  C ) )
1614, 15syl6eq 2524 . . . . . . . . 9  |-  ( J  e.  ( ZZ>= `  1
)  ->  ( (
1 ... J )  i^i 
C )  =  ( ( ( 1 ... ( J  -  1 ) )  i^i  C
)  u.  ( { J }  i^i  C
) ) )
1712, 16syl 16 . . . . . . . 8  |-  ( ph  ->  ( ( 1 ... J )  i^i  C
)  =  ( ( ( 1 ... ( J  -  1 ) )  i^i  C )  u.  ( { J }  i^i  C ) ) )
1817adantr 465 . . . . . . 7  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( 1 ... J
)  i^i  C )  =  ( ( ( 1 ... ( J  -  1 ) )  i^i  C )  u.  ( { J }  i^i  C ) ) )
19 disjsn 4088 . . . . . . . . . . 11  |-  ( ( C  i^i  { J } )  =  (/)  <->  -.  J  e.  C )
20 incom 3691 . . . . . . . . . . . 12  |-  ( C  i^i  { J }
)  =  ( { J }  i^i  C
)
2120eqeq1i 2474 . . . . . . . . . . 11  |-  ( ( C  i^i  { J } )  =  (/)  <->  ( { J }  i^i  C
)  =  (/) )
2219, 21bitr3i 251 . . . . . . . . . 10  |-  ( -.  J  e.  C  <->  ( { J }  i^i  C )  =  (/) )
2322biimpi 194 . . . . . . . . 9  |-  ( -.  J  e.  C  -> 
( { J }  i^i  C )  =  (/) )
2423adantl 466 . . . . . . . 8  |-  ( (
ph  /\  -.  J  e.  C )  ->  ( { J }  i^i  C
)  =  (/) )
2524uneq2d 3658 . . . . . . 7  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( ( 1 ... ( J  -  1 ) )  i^i  C
)  u.  ( { J }  i^i  C
) )  =  ( ( ( 1 ... ( J  -  1 ) )  i^i  C
)  u.  (/) ) )
26 un0 3810 . . . . . . . 8  |-  ( ( ( 1 ... ( J  -  1 ) )  i^i  C )  u.  (/) )  =  ( ( 1 ... ( J  -  1 ) )  i^i  C )
2726a1i 11 . . . . . . 7  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( ( 1 ... ( J  -  1 ) )  i^i  C
)  u.  (/) )  =  ( ( 1 ... ( J  -  1 ) )  i^i  C
) )
2818, 25, 273eqtrd 2512 . . . . . 6  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( 1 ... J
)  i^i  C )  =  ( ( 1 ... ( J  - 
1 ) )  i^i 
C ) )
2928fveq2d 5870 . . . . 5  |-  ( (
ph  /\  -.  J  e.  C )  ->  ( # `
 ( ( 1 ... J )  i^i 
C ) )  =  ( # `  (
( 1 ... ( J  -  1 ) )  i^i  C ) ) )
3013difeq1d 3621 . . . . . . . . . 10  |-  ( J  e.  ( ZZ>= `  1
)  ->  ( (
1 ... J )  \  C )  =  ( ( ( 1 ... ( J  -  1 ) )  u.  { J } )  \  C
) )
31 difundir 3751 . . . . . . . . . 10  |-  ( ( ( 1 ... ( J  -  1 ) )  u.  { J } )  \  C
)  =  ( ( ( 1 ... ( J  -  1 ) )  \  C )  u.  ( { J }  \  C ) )
3230, 31syl6eq 2524 . . . . . . . . 9  |-  ( J  e.  ( ZZ>= `  1
)  ->  ( (
1 ... J )  \  C )  =  ( ( ( 1 ... ( J  -  1 ) )  \  C
)  u.  ( { J }  \  C
) ) )
3312, 32syl 16 . . . . . . . 8  |-  ( ph  ->  ( ( 1 ... J )  \  C
)  =  ( ( ( 1 ... ( J  -  1 ) )  \  C )  u.  ( { J }  \  C ) ) )
34 disj3 3871 . . . . . . . . . . 11  |-  ( ( { J }  i^i  C )  =  (/)  <->  { J }  =  ( { J }  \  C ) )
3523, 34sylib 196 . . . . . . . . . 10  |-  ( -.  J  e.  C  ->  { J }  =  ( { J }  \  C ) )
3635eqcomd 2475 . . . . . . . . 9  |-  ( -.  J  e.  C  -> 
( { J }  \  C )  =  { J } )
3736uneq2d 3658 . . . . . . . 8  |-  ( -.  J  e.  C  -> 
( ( ( 1 ... ( J  - 
1 ) )  \  C )  u.  ( { J }  \  C
) )  =  ( ( ( 1 ... ( J  -  1 ) )  \  C
)  u.  { J } ) )
3833, 37sylan9eq 2528 . . . . . . 7  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( 1 ... J
)  \  C )  =  ( ( ( 1 ... ( J  -  1 ) ) 
\  C )  u. 
{ J } ) )
3938fveq2d 5870 . . . . . 6  |-  ( (
ph  /\  -.  J  e.  C )  ->  ( # `
 ( ( 1 ... J )  \  C ) )  =  ( # `  (
( ( 1 ... ( J  -  1 ) )  \  C
)  u.  { J } ) ) )
408adantr 465 . . . . . . 7  |-  ( (
ph  /\  -.  J  e.  C )  ->  J  e.  ZZ )
41 uzid 11097 . . . . . . . . . . 11  |-  ( J  e.  ZZ  ->  J  e.  ( ZZ>= `  J )
)
42 uznfz 11762 . . . . . . . . . . 11  |-  ( J  e.  ( ZZ>= `  J
)  ->  -.  J  e.  ( 1 ... ( J  -  1 ) ) )
438, 41, 423syl 20 . . . . . . . . . 10  |-  ( ph  ->  -.  J  e.  ( 1 ... ( J  -  1 ) ) )
4443adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  -.  J  e.  C )  ->  -.  J  e.  ( 1 ... ( J  - 
1 ) ) )
45 difss 3631 . . . . . . . . . 10  |-  ( ( 1 ... ( J  -  1 ) ) 
\  C )  C_  ( 1 ... ( J  -  1 ) )
4645sseli 3500 . . . . . . . . 9  |-  ( J  e.  ( ( 1 ... ( J  - 
1 ) )  \  C )  ->  J  e.  ( 1 ... ( J  -  1 ) ) )
4744, 46nsyl 121 . . . . . . . 8  |-  ( (
ph  /\  -.  J  e.  C )  ->  -.  J  e.  ( (
1 ... ( J  - 
1 ) )  \  C ) )
48 fzfi 12051 . . . . . . . . 9  |-  ( 1 ... ( J  - 
1 ) )  e. 
Fin
49 ssfi 7741 . . . . . . . . 9  |-  ( ( ( 1 ... ( J  -  1 ) )  e.  Fin  /\  ( ( 1 ... ( J  -  1 ) )  \  C
)  C_  ( 1 ... ( J  - 
1 ) ) )  ->  ( ( 1 ... ( J  - 
1 ) )  \  C )  e.  Fin )
5048, 45, 49mp2an 672 . . . . . . . 8  |-  ( ( 1 ... ( J  -  1 ) ) 
\  C )  e. 
Fin
5147, 50jctil 537 . . . . . . 7  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( ( 1 ... ( J  -  1 ) )  \  C
)  e.  Fin  /\  -.  J  e.  (
( 1 ... ( J  -  1 ) )  \  C ) ) )
52 hashunsng 12428 . . . . . . 7  |-  ( J  e.  ZZ  ->  (
( ( ( 1 ... ( J  - 
1 ) )  \  C )  e.  Fin  /\ 
-.  J  e.  ( ( 1 ... ( J  -  1 ) )  \  C ) )  ->  ( # `  (
( ( 1 ... ( J  -  1 ) )  \  C
)  u.  { J } ) )  =  ( ( # `  (
( 1 ... ( J  -  1 ) )  \  C ) )  +  1 ) ) )
5340, 51, 52sylc 60 . . . . . 6  |-  ( (
ph  /\  -.  J  e.  C )  ->  ( # `
 ( ( ( 1 ... ( J  -  1 ) ) 
\  C )  u. 
{ J } ) )  =  ( (
# `  ( (
1 ... ( J  - 
1 ) )  \  C ) )  +  1 ) )
5439, 53eqtrd 2508 . . . . 5  |-  ( (
ph  /\  -.  J  e.  C )  ->  ( # `
 ( ( 1 ... J )  \  C ) )  =  ( ( # `  (
( 1 ... ( J  -  1 ) )  \  C ) )  +  1 ) )
5529, 54oveq12d 6303 . . . 4  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( # `  ( ( 1 ... J )  i^i  C ) )  -  ( # `  (
( 1 ... J
)  \  C )
) )  =  ( ( # `  (
( 1 ... ( J  -  1 ) )  i^i  C ) )  -  ( (
# `  ( (
1 ... ( J  - 
1 ) )  \  C ) )  +  1 ) ) )
56 1z 10895 . . . . . . . . . 10  |-  1  e.  ZZ
5756a1i 11 . . . . . . . . 9  |-  ( ph  ->  1  e.  ZZ )
588, 57zsubcld 10972 . . . . . . . 8  |-  ( ph  ->  ( J  -  1 )  e.  ZZ )
591, 2, 3, 4, 5, 6, 58ballotlemfval 28179 . . . . . . 7  |-  ( ph  ->  ( ( F `  C ) `  ( J  -  1 ) )  =  ( (
# `  ( (
1 ... ( J  - 
1 ) )  i^i 
C ) )  -  ( # `  ( ( 1 ... ( J  -  1 ) ) 
\  C ) ) ) )
6059adantr 465 . . . . . 6  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( F `  C
) `  ( J  -  1 ) )  =  ( ( # `  ( ( 1 ... ( J  -  1 ) )  i^i  C
) )  -  ( # `
 ( ( 1 ... ( J  - 
1 ) )  \  C ) ) ) )
6160oveq1d 6300 . . . . 5  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( ( F `  C ) `  ( J  -  1 ) )  -  1 )  =  ( ( (
# `  ( (
1 ... ( J  - 
1 ) )  i^i 
C ) )  -  ( # `  ( ( 1 ... ( J  -  1 ) ) 
\  C ) ) )  -  1 ) )
62 inss1 3718 . . . . . . . . . 10  |-  ( ( 1 ... ( J  -  1 ) )  i^i  C )  C_  ( 1 ... ( J  -  1 ) )
63 ssfi 7741 . . . . . . . . . 10  |-  ( ( ( 1 ... ( J  -  1 ) )  e.  Fin  /\  ( ( 1 ... ( J  -  1 ) )  i^i  C
)  C_  ( 1 ... ( J  - 
1 ) ) )  ->  ( ( 1 ... ( J  - 
1 ) )  i^i 
C )  e.  Fin )
6448, 62, 63mp2an 672 . . . . . . . . 9  |-  ( ( 1 ... ( J  -  1 ) )  i^i  C )  e. 
Fin
65 hashcl 12397 . . . . . . . . 9  |-  ( ( ( 1 ... ( J  -  1 ) )  i^i  C )  e.  Fin  ->  ( # `
 ( ( 1 ... ( J  - 
1 ) )  i^i 
C ) )  e. 
NN0 )
6664, 65ax-mp 5 . . . . . . . 8  |-  ( # `  ( ( 1 ... ( J  -  1 ) )  i^i  C
) )  e.  NN0
6766nn0cni 10808 . . . . . . 7  |-  ( # `  ( ( 1 ... ( J  -  1 ) )  i^i  C
) )  e.  CC
6867a1i 11 . . . . . 6  |-  ( (
ph  /\  -.  J  e.  C )  ->  ( # `
 ( ( 1 ... ( J  - 
1 ) )  i^i 
C ) )  e.  CC )
69 diffi 7752 . . . . . . . . . 10  |-  ( ( 1 ... ( J  -  1 ) )  e.  Fin  ->  (
( 1 ... ( J  -  1 ) )  \  C )  e.  Fin )
7048, 69ax-mp 5 . . . . . . . . 9  |-  ( ( 1 ... ( J  -  1 ) ) 
\  C )  e. 
Fin
71 hashcl 12397 . . . . . . . . 9  |-  ( ( ( 1 ... ( J  -  1 ) )  \  C )  e.  Fin  ->  ( # `
 ( ( 1 ... ( J  - 
1 ) )  \  C ) )  e. 
NN0 )
7270, 71ax-mp 5 . . . . . . . 8  |-  ( # `  ( ( 1 ... ( J  -  1 ) )  \  C
) )  e.  NN0
7372nn0cni 10808 . . . . . . 7  |-  ( # `  ( ( 1 ... ( J  -  1 ) )  \  C
) )  e.  CC
7473a1i 11 . . . . . 6  |-  ( (
ph  /\  -.  J  e.  C )  ->  ( # `
 ( ( 1 ... ( J  - 
1 ) )  \  C ) )  e.  CC )
75 ax-1cn 9551 . . . . . . 7  |-  1  e.  CC
7675a1i 11 . . . . . 6  |-  ( (
ph  /\  -.  J  e.  C )  ->  1  e.  CC )
7768, 74, 76subsub4d 9962 . . . . 5  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( ( # `  (
( 1 ... ( J  -  1 ) )  i^i  C ) )  -  ( # `  ( ( 1 ... ( J  -  1 ) )  \  C
) ) )  - 
1 )  =  ( ( # `  (
( 1 ... ( J  -  1 ) )  i^i  C ) )  -  ( (
# `  ( (
1 ... ( J  - 
1 ) )  \  C ) )  +  1 ) ) )
7861, 77eqtr2d 2509 . . . 4  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( # `  ( ( 1 ... ( J  -  1 ) )  i^i  C ) )  -  ( ( # `  ( ( 1 ... ( J  -  1 ) )  \  C
) )  +  1 ) )  =  ( ( ( F `  C ) `  ( J  -  1 ) )  -  1 ) )
7910, 55, 783eqtrd 2512 . . 3  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( F `  C
) `  J )  =  ( ( ( F `  C ) `
 ( J  - 
1 ) )  - 
1 ) )
8079ex 434 . 2  |-  ( ph  ->  ( -.  J  e.  C  ->  ( ( F `  C ) `  J )  =  ( ( ( F `  C ) `  ( J  -  1 ) )  -  1 ) ) )
819adantr 465 . . . 4  |-  ( (
ph  /\  J  e.  C )  ->  (
( F `  C
) `  J )  =  ( ( # `  ( ( 1 ... J )  i^i  C
) )  -  ( # `
 ( ( 1 ... J )  \  C ) ) ) )
8217fveq2d 5870 . . . . . . 7  |-  ( ph  ->  ( # `  (
( 1 ... J
)  i^i  C )
)  =  ( # `  ( ( ( 1 ... ( J  - 
1 ) )  i^i 
C )  u.  ( { J }  i^i  C
) ) ) )
8382adantr 465 . . . . . 6  |-  ( (
ph  /\  J  e.  C )  ->  ( # `
 ( ( 1 ... J )  i^i 
C ) )  =  ( # `  (
( ( 1 ... ( J  -  1 ) )  i^i  C
)  u.  ( { J }  i^i  C
) ) ) )
84 snssi 4171 . . . . . . . . . 10  |-  ( J  e.  C  ->  { J }  C_  C )
85 df-ss 3490 . . . . . . . . . 10  |-  ( { J }  C_  C  <->  ( { J }  i^i  C )  =  { J } )
8684, 85sylib 196 . . . . . . . . 9  |-  ( J  e.  C  ->  ( { J }  i^i  C
)  =  { J } )
8786uneq2d 3658 . . . . . . . 8  |-  ( J  e.  C  ->  (
( ( 1 ... ( J  -  1 ) )  i^i  C
)  u.  ( { J }  i^i  C
) )  =  ( ( ( 1 ... ( J  -  1 ) )  i^i  C
)  u.  { J } ) )
8887fveq2d 5870 . . . . . . 7  |-  ( J  e.  C  ->  ( # `
 ( ( ( 1 ... ( J  -  1 ) )  i^i  C )  u.  ( { J }  i^i  C ) ) )  =  ( # `  (
( ( 1 ... ( J  -  1 ) )  i^i  C
)  u.  { J } ) ) )
8988adantl 466 . . . . . 6  |-  ( (
ph  /\  J  e.  C )  ->  ( # `
 ( ( ( 1 ... ( J  -  1 ) )  i^i  C )  u.  ( { J }  i^i  C ) ) )  =  ( # `  (
( ( 1 ... ( J  -  1 ) )  i^i  C
)  u.  { J } ) ) )
90 simpr 461 . . . . . . 7  |-  ( (
ph  /\  J  e.  C )  ->  J  e.  C )
918adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  J  e.  C )  ->  J  e.  ZZ )
9291, 41, 423syl 20 . . . . . . . . 9  |-  ( (
ph  /\  J  e.  C )  ->  -.  J  e.  ( 1 ... ( J  - 
1 ) ) )
9362sseli 3500 . . . . . . . . 9  |-  ( J  e.  ( ( 1 ... ( J  - 
1 ) )  i^i 
C )  ->  J  e.  ( 1 ... ( J  -  1 ) ) )
9492, 93nsyl 121 . . . . . . . 8  |-  ( (
ph  /\  J  e.  C )  ->  -.  J  e.  ( (
1 ... ( J  - 
1 ) )  i^i 
C ) )
9594, 64jctil 537 . . . . . . 7  |-  ( (
ph  /\  J  e.  C )  ->  (
( ( 1 ... ( J  -  1 ) )  i^i  C
)  e.  Fin  /\  -.  J  e.  (
( 1 ... ( J  -  1 ) )  i^i  C ) ) )
96 hashunsng 12428 . . . . . . 7  |-  ( J  e.  C  ->  (
( ( ( 1 ... ( J  - 
1 ) )  i^i 
C )  e.  Fin  /\ 
-.  J  e.  ( ( 1 ... ( J  -  1 ) )  i^i  C ) )  ->  ( # `  (
( ( 1 ... ( J  -  1 ) )  i^i  C
)  u.  { J } ) )  =  ( ( # `  (
( 1 ... ( J  -  1 ) )  i^i  C ) )  +  1 ) ) )
9790, 95, 96sylc 60 . . . . . 6  |-  ( (
ph  /\  J  e.  C )  ->  ( # `
 ( ( ( 1 ... ( J  -  1 ) )  i^i  C )  u. 
{ J } ) )  =  ( (
# `  ( (
1 ... ( J  - 
1 ) )  i^i 
C ) )  +  1 ) )
9883, 89, 973eqtrd 2512 . . . . 5  |-  ( (
ph  /\  J  e.  C )  ->  ( # `
 ( ( 1 ... J )  i^i 
C ) )  =  ( ( # `  (
( 1 ... ( J  -  1 ) )  i^i  C ) )  +  1 ) )
9933fveq2d 5870 . . . . . . 7  |-  ( ph  ->  ( # `  (
( 1 ... J
)  \  C )
)  =  ( # `  ( ( ( 1 ... ( J  - 
1 ) )  \  C )  u.  ( { J }  \  C
) ) ) )
10099adantr 465 . . . . . 6  |-  ( (
ph  /\  J  e.  C )  ->  ( # `
 ( ( 1 ... J )  \  C ) )  =  ( # `  (
( ( 1 ... ( J  -  1 ) )  \  C
)  u.  ( { J }  \  C
) ) ) )
101 difin2 3760 . . . . . . . . . . 11  |-  ( { J }  C_  C  ->  ( { J }  \  C )  =  ( ( C  \  C
)  i^i  { J } ) )
102 difid 3895 . . . . . . . . . . . . 13  |-  ( C 
\  C )  =  (/)
103102ineq1i 3696 . . . . . . . . . . . 12  |-  ( ( C  \  C )  i^i  { J }
)  =  ( (/)  i^i 
{ J } )
104 incom 3691 . . . . . . . . . . . 12  |-  ( (/)  i^i 
{ J } )  =  ( { J }  i^i  (/) )
105 in0 3811 . . . . . . . . . . . 12  |-  ( { J }  i^i  (/) )  =  (/)
106103, 104, 1053eqtri 2500 . . . . . . . . . . 11  |-  ( ( C  \  C )  i^i  { J }
)  =  (/)
107101, 106syl6eq 2524 . . . . . . . . . 10  |-  ( { J }  C_  C  ->  ( { J }  \  C )  =  (/) )
10884, 107syl 16 . . . . . . . . 9  |-  ( J  e.  C  ->  ( { J }  \  C
)  =  (/) )
109108uneq2d 3658 . . . . . . . 8  |-  ( J  e.  C  ->  (
( ( 1 ... ( J  -  1 ) )  \  C
)  u.  ( { J }  \  C
) )  =  ( ( ( 1 ... ( J  -  1 ) )  \  C
)  u.  (/) ) )
110109fveq2d 5870 . . . . . . 7  |-  ( J  e.  C  ->  ( # `
 ( ( ( 1 ... ( J  -  1 ) ) 
\  C )  u.  ( { J }  \  C ) ) )  =  ( # `  (
( ( 1 ... ( J  -  1 ) )  \  C
)  u.  (/) ) ) )
111110adantl 466 . . . . . 6  |-  ( (
ph  /\  J  e.  C )  ->  ( # `
 ( ( ( 1 ... ( J  -  1 ) ) 
\  C )  u.  ( { J }  \  C ) ) )  =  ( # `  (
( ( 1 ... ( J  -  1 ) )  \  C
)  u.  (/) ) ) )
112 un0 3810 . . . . . . . 8  |-  ( ( ( 1 ... ( J  -  1 ) )  \  C )  u.  (/) )  =  ( ( 1 ... ( J  -  1 ) )  \  C )
113112a1i 11 . . . . . . 7  |-  ( (
ph  /\  J  e.  C )  ->  (
( ( 1 ... ( J  -  1 ) )  \  C
)  u.  (/) )  =  ( ( 1 ... ( J  -  1 ) )  \  C
) )
114113fveq2d 5870 . . . . . 6  |-  ( (
ph  /\  J  e.  C )  ->  ( # `
 ( ( ( 1 ... ( J  -  1 ) ) 
\  C )  u.  (/) ) )  =  (
# `  ( (
1 ... ( J  - 
1 ) )  \  C ) ) )
115100, 111, 1143eqtrd 2512 . . . . 5  |-  ( (
ph  /\  J  e.  C )  ->  ( # `
 ( ( 1 ... J )  \  C ) )  =  ( # `  (
( 1 ... ( J  -  1 ) )  \  C ) ) )
11698, 115oveq12d 6303 . . . 4  |-  ( (
ph  /\  J  e.  C )  ->  (
( # `  ( ( 1 ... J )  i^i  C ) )  -  ( # `  (
( 1 ... J
)  \  C )
) )  =  ( ( ( # `  (
( 1 ... ( J  -  1 ) )  i^i  C ) )  +  1 )  -  ( # `  (
( 1 ... ( J  -  1 ) )  \  C ) ) ) )
11767a1i 11 . . . . . 6  |-  ( (
ph  /\  J  e.  C )  ->  ( # `
 ( ( 1 ... ( J  - 
1 ) )  i^i 
C ) )  e.  CC )
11875a1i 11 . . . . . 6  |-  ( (
ph  /\  J  e.  C )  ->  1  e.  CC )
11973a1i 11 . . . . . 6  |-  ( (
ph  /\  J  e.  C )  ->  ( # `
 ( ( 1 ... ( J  - 
1 ) )  \  C ) )  e.  CC )
120117, 118, 119addsubd 9952 . . . . 5  |-  ( (
ph  /\  J  e.  C )  ->  (
( ( # `  (
( 1 ... ( J  -  1 ) )  i^i  C ) )  +  1 )  -  ( # `  (
( 1 ... ( J  -  1 ) )  \  C ) ) )  =  ( ( ( # `  (
( 1 ... ( J  -  1 ) )  i^i  C ) )  -  ( # `  ( ( 1 ... ( J  -  1 ) )  \  C
) ) )  +  1 ) )
12159adantr 465 . . . . . 6  |-  ( (
ph  /\  J  e.  C )  ->  (
( F `  C
) `  ( J  -  1 ) )  =  ( ( # `  ( ( 1 ... ( J  -  1 ) )  i^i  C
) )  -  ( # `
 ( ( 1 ... ( J  - 
1 ) )  \  C ) ) ) )
122121oveq1d 6300 . . . . 5  |-  ( (
ph  /\  J  e.  C )  ->  (
( ( F `  C ) `  ( J  -  1 ) )  +  1 )  =  ( ( (
# `  ( (
1 ... ( J  - 
1 ) )  i^i 
C ) )  -  ( # `  ( ( 1 ... ( J  -  1 ) ) 
\  C ) ) )  +  1 ) )
123120, 122eqtr4d 2511 . . . 4  |-  ( (
ph  /\  J  e.  C )  ->  (
( ( # `  (
( 1 ... ( J  -  1 ) )  i^i  C ) )  +  1 )  -  ( # `  (
( 1 ... ( J  -  1 ) )  \  C ) ) )  =  ( ( ( F `  C ) `  ( J  -  1 ) )  +  1 ) )
12481, 116, 1233eqtrd 2512 . . 3  |-  ( (
ph  /\  J  e.  C )  ->  (
( F `  C
) `  J )  =  ( ( ( F `  C ) `
 ( J  - 
1 ) )  +  1 ) )
125124ex 434 . 2  |-  ( ph  ->  ( J  e.  C  ->  ( ( F `  C ) `  J
)  =  ( ( ( F `  C
) `  ( J  -  1 ) )  +  1 ) ) )
12680, 125jca 532 1  |-  ( ph  ->  ( ( -.  J  e.  C  ->  ( ( F `  C ) `
 J )  =  ( ( ( F `
 C ) `  ( J  -  1
) )  -  1 ) )  /\  ( J  e.  C  ->  ( ( F `  C
) `  J )  =  ( ( ( F `  C ) `
 ( J  - 
1 ) )  +  1 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   {crab 2818    \ cdif 3473    u. cun 3474    i^i cin 3475    C_ wss 3476   (/)c0 3785   ~Pcpw 4010   {csn 4027    |-> cmpt 4505   ` cfv 5588  (class class class)co 6285   Fincfn 7517   CCcc 9491   1c1 9494    + caddc 9496    - cmin 9806    / cdiv 10207   NNcn 10537   NN0cn0 10796   ZZcz 10865   ZZ>=cuz 11083   ...cfz 11673   #chash 12374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-cnex 9549  ax-resscn 9550  ax-1cn 9551  ax-icn 9552  ax-addcl 9553  ax-addrcl 9554  ax-mulcl 9555  ax-mulrcl 9556  ax-mulcom 9557  ax-addass 9558  ax-mulass 9559  ax-distr 9560  ax-i2m1 9561  ax-1ne0 9562  ax-1rid 9563  ax-rnegex 9564  ax-rrecex 9565  ax-cnre 9566  ax-pre-lttri 9567  ax-pre-lttrn 9568  ax-pre-ltadd 9569  ax-pre-mulgt0 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7043  df-rdg 7077  df-1o 7131  df-oadd 7135  df-er 7312  df-en 7518  df-dom 7519  df-sdom 7520  df-fin 7521  df-card 8321  df-cda 8549  df-pnf 9631  df-mnf 9632  df-xr 9633  df-ltxr 9634  df-le 9635  df-sub 9808  df-neg 9809  df-nn 10538  df-n0 10797  df-z 10866  df-uz 11084  df-fz 11674  df-hash 12375
This theorem is referenced by:  ballotlemfc0  28182  ballotlemfcc  28183  ballotlem4  28188  ballotlemi1  28192  ballotlemii  28193  ballotlemic  28196  ballotlem1c  28197
  Copyright terms: Public domain W3C validator