Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemelo Unicode version

Theorem ballotlemelo 24698
Description: Elementhood in  O. (Contributed by Thierry Arnoux, 17-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
Assertion
Ref Expression
ballotlemelo  |-  ( C  e.  O  <->  ( C  C_  ( 1 ... ( M  +  N )
)  /\  ( # `  C
)  =  M ) )
Distinct variable groups:    M, c    N, c    O, c
Allowed substitution hint:    C( c)

Proof of Theorem ballotlemelo
Dummy variable  d is distinct from all other variables.
StepHypRef Expression
1 fveq2 5687 . . . 4  |-  ( d  =  C  ->  ( # `
 d )  =  ( # `  C
) )
21eqeq1d 2412 . . 3  |-  ( d  =  C  ->  (
( # `  d )  =  M  <->  ( # `  C
)  =  M ) )
3 ballotth.o . . . 4  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
4 fveq2 5687 . . . . . 6  |-  ( c  =  d  ->  ( # `
 c )  =  ( # `  d
) )
54eqeq1d 2412 . . . . 5  |-  ( c  =  d  ->  (
( # `  c )  =  M  <->  ( # `  d
)  =  M ) )
65cbvrabv 2915 . . . 4  |-  { c  e.  ~P ( 1 ... ( M  +  N ) )  |  ( # `  c
)  =  M }  =  { d  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  d )  =  M }
73, 6eqtri 2424 . . 3  |-  O  =  { d  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  d )  =  M }
82, 7elrab2 3054 . 2  |-  ( C  e.  O  <->  ( C  e.  ~P ( 1 ... ( M  +  N
) )  /\  ( # `
 C )  =  M ) )
9 ovex 6065 . . . 4  |-  ( 1 ... ( M  +  N ) )  e. 
_V
109elpw2 4324 . . 3  |-  ( C  e.  ~P ( 1 ... ( M  +  N ) )  <->  C  C_  (
1 ... ( M  +  N ) ) )
1110anbi1i 677 . 2  |-  ( ( C  e.  ~P (
1 ... ( M  +  N ) )  /\  ( # `  C )  =  M )  <->  ( C  C_  ( 1 ... ( M  +  N )
)  /\  ( # `  C
)  =  M ) )
128, 11bitri 241 1  |-  ( C  e.  O  <->  ( C  C_  ( 1 ... ( M  +  N )
)  /\  ( # `  C
)  =  M ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   {crab 2670    C_ wss 3280   ~Pcpw 3759   ` cfv 5413  (class class class)co 6040   1c1 8947    + caddc 8949   NNcn 9956   ...cfz 10999   #chash 11573
This theorem is referenced by:  ballotlemscr  24729  ballotlemro  24733  ballotlemfg  24736  ballotlemfrc  24737  ballotlemfrceq  24739  ballotlemrinv0  24743
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-iota 5377  df-fv 5421  df-ov 6043
  Copyright terms: Public domain W3C validator