Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem5a Structured version   Unicode version

Theorem baerlem5a 35668
Description: An equality that holds when  X,  Y,  Z are independent (non-colinear) vectors. First equation of part (5) in [Baer] p. 46. (Contributed by NM, 10-Apr-2015.)
Hypotheses
Ref Expression
baerlem3.v  |-  V  =  ( Base `  W
)
baerlem3.m  |-  .-  =  ( -g `  W )
baerlem3.o  |-  .0.  =  ( 0g `  W )
baerlem3.s  |-  .(+)  =  (
LSSum `  W )
baerlem3.n  |-  N  =  ( LSpan `  W )
baerlem3.w  |-  ( ph  ->  W  e.  LVec )
baerlem3.x  |-  ( ph  ->  X  e.  V )
baerlem3.c  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
baerlem3.d  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
baerlem3.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
baerlem3.z  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
baerlem5a.p  |-  .+  =  ( +g  `  W )
Assertion
Ref Expression
baerlem5a  |-  ( ph  ->  ( N `  {
( X  .-  ( Y  .+  Z ) ) } )  =  ( ( ( N `  { ( X  .-  Y ) } ) 
.(+)  ( N `  { Z } ) )  i^i  ( ( N `
 { ( X 
.-  Z ) } )  .(+)  ( N `  { Y } ) ) ) )

Proof of Theorem baerlem5a
StepHypRef Expression
1 baerlem3.v . 2  |-  V  =  ( Base `  W
)
2 baerlem3.m . 2  |-  .-  =  ( -g `  W )
3 baerlem3.o . 2  |-  .0.  =  ( 0g `  W )
4 baerlem3.s . 2  |-  .(+)  =  (
LSSum `  W )
5 baerlem3.n . 2  |-  N  =  ( LSpan `  W )
6 baerlem3.w . 2  |-  ( ph  ->  W  e.  LVec )
7 baerlem3.x . 2  |-  ( ph  ->  X  e.  V )
8 baerlem3.c . 2  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
9 baerlem3.d . 2  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
10 baerlem3.y . 2  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
11 baerlem3.z . 2  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
12 baerlem5a.p . 2  |-  .+  =  ( +g  `  W )
13 eqid 2451 . 2  |-  ( .s
`  W )  =  ( .s `  W
)
14 eqid 2451 . 2  |-  (Scalar `  W )  =  (Scalar `  W )
15 eqid 2451 . 2  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
16 eqid 2451 . 2  |-  ( +g  `  (Scalar `  W )
)  =  ( +g  `  (Scalar `  W )
)
17 eqid 2451 . 2  |-  ( -g `  (Scalar `  W )
)  =  ( -g `  (Scalar `  W )
)
18 eqid 2451 . 2  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
19 eqid 2451 . 2  |-  ( invg `  (Scalar `  W ) )  =  ( invg `  (Scalar `  W ) )
201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19baerlem5alem2 35665 1  |-  ( ph  ->  ( N `  {
( X  .-  ( Y  .+  Z ) ) } )  =  ( ( ( N `  { ( X  .-  Y ) } ) 
.(+)  ( N `  { Z } ) )  i^i  ( ( N `
 { ( X 
.-  Z ) } )  .(+)  ( N `  { Y } ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1370    e. wcel 1758    =/= wne 2644    \ cdif 3426    i^i cin 3428   {csn 3978   {cpr 3980   ` cfv 5519  (class class class)co 6193   Basecbs 14285   +g cplusg 14349  Scalarcsca 14352   .scvsca 14353   0gc0g 14489   invgcminusg 15522   -gcsg 15524   LSSumclsm 16246   LSpanclspn 17167   LVecclvec 17298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-cnex 9442  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-mulcom 9450  ax-addass 9451  ax-mulass 9452  ax-distr 9453  ax-i2m1 9454  ax-1ne0 9455  ax-1rid 9456  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459  ax-pre-lttri 9460  ax-pre-lttrn 9461  ax-pre-ltadd 9462  ax-pre-mulgt0 9463
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-int 4230  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-om 6580  df-1st 6680  df-2nd 6681  df-tpos 6848  df-recs 6935  df-rdg 6969  df-er 7204  df-en 7414  df-dom 7415  df-sdom 7416  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528  df-sub 9701  df-neg 9702  df-nn 10427  df-2 10484  df-3 10485  df-ndx 14288  df-slot 14289  df-base 14290  df-sets 14291  df-ress 14292  df-plusg 14362  df-mulr 14363  df-0g 14491  df-mnd 15526  df-submnd 15576  df-grp 15656  df-minusg 15657  df-sbg 15658  df-subg 15789  df-cntz 15946  df-lsm 16248  df-cmn 16392  df-abl 16393  df-mgp 16706  df-ur 16718  df-rng 16762  df-oppr 16830  df-dvdsr 16848  df-unit 16849  df-invr 16879  df-drng 16949  df-lmod 17065  df-lss 17129  df-lsp 17168  df-lvec 17299
This theorem is referenced by:  baerlem5amN  35670  baerlem5abmN  35672  mapdh6lem1N  35687  hdmap1l6lem1  35762
  Copyright terms: Public domain W3C validator