Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem3lem2 Structured version   Unicode version

Theorem baerlem3lem2 35663
Description: Lemma for baerlem3 35666. (Contributed by NM, 9-Apr-2015.)
Hypotheses
Ref Expression
baerlem3.v  |-  V  =  ( Base `  W
)
baerlem3.m  |-  .-  =  ( -g `  W )
baerlem3.o  |-  .0.  =  ( 0g `  W )
baerlem3.s  |-  .(+)  =  (
LSSum `  W )
baerlem3.n  |-  N  =  ( LSpan `  W )
baerlem3.w  |-  ( ph  ->  W  e.  LVec )
baerlem3.x  |-  ( ph  ->  X  e.  V )
baerlem3.c  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
baerlem3.d  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
baerlem3.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
baerlem3.z  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
baerlem3.p  |-  .+  =  ( +g  `  W )
baerlem3.t  |-  .x.  =  ( .s `  W )
baerlem3.r  |-  R  =  (Scalar `  W )
baerlem3.b  |-  B  =  ( Base `  R
)
baerlem3.a  |-  .+^  =  ( +g  `  R )
baerlem3.l  |-  L  =  ( -g `  R
)
baerlem3.q  |-  Q  =  ( 0g `  R
)
baerlem3.i  |-  I  =  ( invg `  R )
Assertion
Ref Expression
baerlem3lem2  |-  ( ph  ->  ( N `  {
( Y  .-  Z
) } )  =  ( ( ( N `
 { Y }
)  .(+)  ( N `  { Z } ) )  i^i  ( ( N `
 { ( X 
.-  Y ) } )  .(+)  ( N `  { ( X  .-  Z ) } ) ) ) )

Proof of Theorem baerlem3lem2
Dummy variables  a 
b  d  e  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 baerlem3.w . . . . 5  |-  ( ph  ->  W  e.  LVec )
2 lveclmod 17295 . . . . 5  |-  ( W  e.  LVec  ->  W  e. 
LMod )
31, 2syl 16 . . . 4  |-  ( ph  ->  W  e.  LMod )
4 baerlem3.y . . . . 5  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
54eldifad 3440 . . . 4  |-  ( ph  ->  Y  e.  V )
6 baerlem3.z . . . . 5  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
76eldifad 3440 . . . 4  |-  ( ph  ->  Z  e.  V )
8 baerlem3.v . . . . 5  |-  V  =  ( Base `  W
)
9 baerlem3.m . . . . 5  |-  .-  =  ( -g `  W )
10 baerlem3.s . . . . 5  |-  .(+)  =  (
LSSum `  W )
11 baerlem3.n . . . . 5  |-  N  =  ( LSpan `  W )
128, 9, 10, 11lspsntrim 17287 . . . 4  |-  ( ( W  e.  LMod  /\  Y  e.  V  /\  Z  e.  V )  ->  ( N `  { ( Y  .-  Z ) } )  C_  ( ( N `  { Y } )  .(+)  ( N `
 { Z }
) ) )
133, 5, 7, 12syl3anc 1219 . . 3  |-  ( ph  ->  ( N `  {
( Y  .-  Z
) } )  C_  ( ( N `  { Y } )  .(+)  ( N `  { Z } ) ) )
148, 9, 11, 3, 5, 7lspsnsub 17196 . . . . 5  |-  ( ph  ->  ( N `  {
( Y  .-  Z
) } )  =  ( N `  {
( Z  .-  Y
) } ) )
15 lmodabl 17100 . . . . . . . . 9  |-  ( W  e.  LMod  ->  W  e. 
Abel )
163, 15syl 16 . . . . . . . 8  |-  ( ph  ->  W  e.  Abel )
17 baerlem3.x . . . . . . . 8  |-  ( ph  ->  X  e.  V )
188, 9, 16, 17, 5, 7ablnnncan1 16418 . . . . . . 7  |-  ( ph  ->  ( ( X  .-  Y )  .-  ( X  .-  Z ) )  =  ( Z  .-  Y ) )
1918sneqd 3989 . . . . . 6  |-  ( ph  ->  { ( ( X 
.-  Y )  .-  ( X  .-  Z ) ) }  =  {
( Z  .-  Y
) } )
2019fveq2d 5795 . . . . 5  |-  ( ph  ->  ( N `  {
( ( X  .-  Y )  .-  ( X  .-  Z ) ) } )  =  ( N `  { ( Z  .-  Y ) } ) )
2114, 20eqtr4d 2495 . . . 4  |-  ( ph  ->  ( N `  {
( Y  .-  Z
) } )  =  ( N `  {
( ( X  .-  Y )  .-  ( X  .-  Z ) ) } ) )
228, 9lmodvsubcl 17098 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .-  Y )  e.  V )
233, 17, 5, 22syl3anc 1219 . . . . 5  |-  ( ph  ->  ( X  .-  Y
)  e.  V )
248, 9lmodvsubcl 17098 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Z  e.  V )  ->  ( X  .-  Z )  e.  V )
253, 17, 7, 24syl3anc 1219 . . . . 5  |-  ( ph  ->  ( X  .-  Z
)  e.  V )
268, 9, 10, 11lspsntrim 17287 . . . . 5  |-  ( ( W  e.  LMod  /\  ( X  .-  Y )  e.  V  /\  ( X 
.-  Z )  e.  V )  ->  ( N `  { (
( X  .-  Y
)  .-  ( X  .-  Z ) ) } )  C_  ( ( N `  { ( X  .-  Y ) } )  .(+)  ( N `  { ( X  .-  Z ) } ) ) )
273, 23, 25, 26syl3anc 1219 . . . 4  |-  ( ph  ->  ( N `  {
( ( X  .-  Y )  .-  ( X  .-  Z ) ) } )  C_  (
( N `  {
( X  .-  Y
) } )  .(+)  ( N `  { ( X  .-  Z ) } ) ) )
2821, 27eqsstrd 3490 . . 3  |-  ( ph  ->  ( N `  {
( Y  .-  Z
) } )  C_  ( ( N `  { ( X  .-  Y ) } ) 
.(+)  ( N `  { ( X  .-  Z ) } ) ) )
2913, 28ssind 3674 . 2  |-  ( ph  ->  ( N `  {
( Y  .-  Z
) } )  C_  ( ( ( N `
 { Y }
)  .(+)  ( N `  { Z } ) )  i^i  ( ( N `
 { ( X 
.-  Y ) } )  .(+)  ( N `  { ( X  .-  Z ) } ) ) ) )
30 elin 3639 . . . . 5  |-  ( j  e.  ( ( ( N `  { Y } )  .(+)  ( N `
 { Z }
) )  i^i  (
( N `  {
( X  .-  Y
) } )  .(+)  ( N `  { ( X  .-  Z ) } ) ) )  <-> 
( j  e.  ( ( N `  { Y } )  .(+)  ( N `
 { Z }
) )  /\  j  e.  ( ( N `  { ( X  .-  Y ) } ) 
.(+)  ( N `  { ( X  .-  Z ) } ) ) ) )
31 baerlem3.p . . . . . . 7  |-  .+  =  ( +g  `  W )
32 baerlem3.r . . . . . . 7  |-  R  =  (Scalar `  W )
33 baerlem3.b . . . . . . 7  |-  B  =  ( Base `  R
)
34 baerlem3.t . . . . . . 7  |-  .x.  =  ( .s `  W )
358, 31, 32, 33, 34, 10, 11, 3, 5, 7lsmspsn 17273 . . . . . 6  |-  ( ph  ->  ( j  e.  ( ( N `  { Y } )  .(+)  ( N `
 { Z }
) )  <->  E. a  e.  B  E. b  e.  B  j  =  ( ( a  .x.  Y )  .+  (
b  .x.  Z )
) ) )
368, 31, 32, 33, 34, 10, 11, 3, 23, 25lsmspsn 17273 . . . . . 6  |-  ( ph  ->  ( j  e.  ( ( N `  {
( X  .-  Y
) } )  .(+)  ( N `  { ( X  .-  Z ) } ) )  <->  E. d  e.  B  E. e  e.  B  j  =  ( ( d  .x.  ( X  .-  Y ) )  .+  ( e 
.x.  ( X  .-  Z ) ) ) ) )
3735, 36anbi12d 710 . . . . 5  |-  ( ph  ->  ( ( j  e.  ( ( N `  { Y } )  .(+)  ( N `  { Z } ) )  /\  j  e.  ( ( N `  { ( X  .-  Y ) } )  .(+)  ( N `  { ( X  .-  Z ) } ) ) )  <->  ( E. a  e.  B  E. b  e.  B  j  =  ( ( a 
.x.  Y )  .+  ( b  .x.  Z
) )  /\  E. d  e.  B  E. e  e.  B  j  =  ( ( d 
.x.  ( X  .-  Y ) )  .+  ( e  .x.  ( X  .-  Z ) ) ) ) ) )
3830, 37syl5bb 257 . . . 4  |-  ( ph  ->  ( j  e.  ( ( ( N `  { Y } )  .(+)  ( N `  { Z } ) )  i^i  ( ( N `  { ( X  .-  Y ) } ) 
.(+)  ( N `  { ( X  .-  Z ) } ) ) )  <->  ( E. a  e.  B  E. b  e.  B  j  =  ( ( a 
.x.  Y )  .+  ( b  .x.  Z
) )  /\  E. d  e.  B  E. e  e.  B  j  =  ( ( d 
.x.  ( X  .-  Y ) )  .+  ( e  .x.  ( X  .-  Z ) ) ) ) ) )
39 baerlem3.o . . . . . . . . . . 11  |-  .0.  =  ( 0g `  W )
40 simp11 1018 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  B )  /\  j  =  (
( a  .x.  Y
)  .+  ( b  .x.  Z ) ) )  /\  ( d  e.  B  /\  e  e.  B )  /\  j  =  ( ( d 
.x.  ( X  .-  Y ) )  .+  ( e  .x.  ( X  .-  Z ) ) ) )  ->  ph )
4140, 1syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  B )  /\  j  =  (
( a  .x.  Y
)  .+  ( b  .x.  Z ) ) )  /\  ( d  e.  B  /\  e  e.  B )  /\  j  =  ( ( d 
.x.  ( X  .-  Y ) )  .+  ( e  .x.  ( X  .-  Z ) ) ) )  ->  W  e.  LVec )
4240, 17syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  B )  /\  j  =  (
( a  .x.  Y
)  .+  ( b  .x.  Z ) ) )  /\  ( d  e.  B  /\  e  e.  B )  /\  j  =  ( ( d 
.x.  ( X  .-  Y ) )  .+  ( e  .x.  ( X  .-  Z ) ) ) )  ->  X  e.  V )
43 baerlem3.c . . . . . . . . . . . 12  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
4440, 43syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  B )  /\  j  =  (
( a  .x.  Y
)  .+  ( b  .x.  Z ) ) )  /\  ( d  e.  B  /\  e  e.  B )  /\  j  =  ( ( d 
.x.  ( X  .-  Y ) )  .+  ( e  .x.  ( X  .-  Z ) ) ) )  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
45 baerlem3.d . . . . . . . . . . . 12  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
4640, 45syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  B )  /\  j  =  (
( a  .x.  Y
)  .+  ( b  .x.  Z ) ) )  /\  ( d  e.  B  /\  e  e.  B )  /\  j  =  ( ( d 
.x.  ( X  .-  Y ) )  .+  ( e  .x.  ( X  .-  Z ) ) ) )  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
4740, 4syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  B )  /\  j  =  (
( a  .x.  Y
)  .+  ( b  .x.  Z ) ) )  /\  ( d  e.  B  /\  e  e.  B )  /\  j  =  ( ( d 
.x.  ( X  .-  Y ) )  .+  ( e  .x.  ( X  .-  Z ) ) ) )  ->  Y  e.  ( V  \  {  .0.  } ) )
4840, 6syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  B )  /\  j  =  (
( a  .x.  Y
)  .+  ( b  .x.  Z ) ) )  /\  ( d  e.  B  /\  e  e.  B )  /\  j  =  ( ( d 
.x.  ( X  .-  Y ) )  .+  ( e  .x.  ( X  .-  Z ) ) ) )  ->  Z  e.  ( V  \  {  .0.  } ) )
49 baerlem3.a . . . . . . . . . . 11  |-  .+^  =  ( +g  `  R )
50 baerlem3.l . . . . . . . . . . 11  |-  L  =  ( -g `  R
)
51 baerlem3.q . . . . . . . . . . 11  |-  Q  =  ( 0g `  R
)
52 baerlem3.i . . . . . . . . . . 11  |-  I  =  ( invg `  R )
53 simp12l 1101 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  B )  /\  j  =  (
( a  .x.  Y
)  .+  ( b  .x.  Z ) ) )  /\  ( d  e.  B  /\  e  e.  B )  /\  j  =  ( ( d 
.x.  ( X  .-  Y ) )  .+  ( e  .x.  ( X  .-  Z ) ) ) )  ->  a  e.  B )
54 simp12r 1102 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  B )  /\  j  =  (
( a  .x.  Y
)  .+  ( b  .x.  Z ) ) )  /\  ( d  e.  B  /\  e  e.  B )  /\  j  =  ( ( d 
.x.  ( X  .-  Y ) )  .+  ( e  .x.  ( X  .-  Z ) ) ) )  ->  b  e.  B )
55 simp2l 1014 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  B )  /\  j  =  (
( a  .x.  Y
)  .+  ( b  .x.  Z ) ) )  /\  ( d  e.  B  /\  e  e.  B )  /\  j  =  ( ( d 
.x.  ( X  .-  Y ) )  .+  ( e  .x.  ( X  .-  Z ) ) ) )  ->  d  e.  B )
56 simp2r 1015 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  B )  /\  j  =  (
( a  .x.  Y
)  .+  ( b  .x.  Z ) ) )  /\  ( d  e.  B  /\  e  e.  B )  /\  j  =  ( ( d 
.x.  ( X  .-  Y ) )  .+  ( e  .x.  ( X  .-  Z ) ) ) )  ->  e  e.  B )
57 simp13 1020 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  B )  /\  j  =  (
( a  .x.  Y
)  .+  ( b  .x.  Z ) ) )  /\  ( d  e.  B  /\  e  e.  B )  /\  j  =  ( ( d 
.x.  ( X  .-  Y ) )  .+  ( e  .x.  ( X  .-  Z ) ) ) )  ->  j  =  ( ( a 
.x.  Y )  .+  ( b  .x.  Z
) ) )
58 simp3 990 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  B )  /\  j  =  (
( a  .x.  Y
)  .+  ( b  .x.  Z ) ) )  /\  ( d  e.  B  /\  e  e.  B )  /\  j  =  ( ( d 
.x.  ( X  .-  Y ) )  .+  ( e  .x.  ( X  .-  Z ) ) ) )  ->  j  =  ( ( d 
.x.  ( X  .-  Y ) )  .+  ( e  .x.  ( X  .-  Z ) ) ) )
598, 9, 39, 10, 11, 41, 42, 44, 46, 47, 48, 31, 34, 32, 33, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58baerlem3lem1 35660 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  B )  /\  j  =  (
( a  .x.  Y
)  .+  ( b  .x.  Z ) ) )  /\  ( d  e.  B  /\  e  e.  B )  /\  j  =  ( ( d 
.x.  ( X  .-  Y ) )  .+  ( e  .x.  ( X  .-  Z ) ) ) )  ->  j  =  ( a  .x.  ( Y  .-  Z ) ) )
6040, 3syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  B )  /\  j  =  (
( a  .x.  Y
)  .+  ( b  .x.  Z ) ) )  /\  ( d  e.  B  /\  e  e.  B )  /\  j  =  ( ( d 
.x.  ( X  .-  Y ) )  .+  ( e  .x.  ( X  .-  Z ) ) ) )  ->  W  e.  LMod )
618, 9lmodvsubcl 17098 . . . . . . . . . . . . 13  |-  ( ( W  e.  LMod  /\  Y  e.  V  /\  Z  e.  V )  ->  ( Y  .-  Z )  e.  V )
623, 5, 7, 61syl3anc 1219 . . . . . . . . . . . 12  |-  ( ph  ->  ( Y  .-  Z
)  e.  V )
6340, 62syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  B )  /\  j  =  (
( a  .x.  Y
)  .+  ( b  .x.  Z ) ) )  /\  ( d  e.  B  /\  e  e.  B )  /\  j  =  ( ( d 
.x.  ( X  .-  Y ) )  .+  ( e  .x.  ( X  .-  Z ) ) ) )  ->  ( Y  .-  Z )  e.  V )
648, 34, 32, 33, 11, 60, 53, 63lspsneli 17190 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  B )  /\  j  =  (
( a  .x.  Y
)  .+  ( b  .x.  Z ) ) )  /\  ( d  e.  B  /\  e  e.  B )  /\  j  =  ( ( d 
.x.  ( X  .-  Y ) )  .+  ( e  .x.  ( X  .-  Z ) ) ) )  ->  (
a  .x.  ( Y  .-  Z ) )  e.  ( N `  {
( Y  .-  Z
) } ) )
6559, 64eqeltrd 2539 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  B )  /\  j  =  (
( a  .x.  Y
)  .+  ( b  .x.  Z ) ) )  /\  ( d  e.  B  /\  e  e.  B )  /\  j  =  ( ( d 
.x.  ( X  .-  Y ) )  .+  ( e  .x.  ( X  .-  Z ) ) ) )  ->  j  e.  ( N `  {
( Y  .-  Z
) } ) )
66653exp 1187 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  B )  /\  j  =  ( ( a 
.x.  Y )  .+  ( b  .x.  Z
) ) )  -> 
( ( d  e.  B  /\  e  e.  B )  ->  (
j  =  ( ( d  .x.  ( X 
.-  Y ) ) 
.+  ( e  .x.  ( X  .-  Z ) ) )  ->  j  e.  ( N `  {
( Y  .-  Z
) } ) ) ) )
6766rexlimdvv 2945 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  B )  /\  j  =  ( ( a 
.x.  Y )  .+  ( b  .x.  Z
) ) )  -> 
( E. d  e.  B  E. e  e.  B  j  =  ( ( d  .x.  ( X  .-  Y ) ) 
.+  ( e  .x.  ( X  .-  Z ) ) )  ->  j  e.  ( N `  {
( Y  .-  Z
) } ) ) )
68673exp 1187 . . . . . 6  |-  ( ph  ->  ( ( a  e.  B  /\  b  e.  B )  ->  (
j  =  ( ( a  .x.  Y ) 
.+  ( b  .x.  Z ) )  -> 
( E. d  e.  B  E. e  e.  B  j  =  ( ( d  .x.  ( X  .-  Y ) ) 
.+  ( e  .x.  ( X  .-  Z ) ) )  ->  j  e.  ( N `  {
( Y  .-  Z
) } ) ) ) ) )
6968rexlimdvv 2945 . . . . 5  |-  ( ph  ->  ( E. a  e.  B  E. b  e.  B  j  =  ( ( a  .x.  Y
)  .+  ( b  .x.  Z ) )  -> 
( E. d  e.  B  E. e  e.  B  j  =  ( ( d  .x.  ( X  .-  Y ) ) 
.+  ( e  .x.  ( X  .-  Z ) ) )  ->  j  e.  ( N `  {
( Y  .-  Z
) } ) ) ) )
7069impd 431 . . . 4  |-  ( ph  ->  ( ( E. a  e.  B  E. b  e.  B  j  =  ( ( a  .x.  Y )  .+  (
b  .x.  Z )
)  /\  E. d  e.  B  E. e  e.  B  j  =  ( ( d  .x.  ( X  .-  Y ) )  .+  ( e 
.x.  ( X  .-  Z ) ) ) )  ->  j  e.  ( N `  { ( Y  .-  Z ) } ) ) )
7138, 70sylbid 215 . . 3  |-  ( ph  ->  ( j  e.  ( ( ( N `  { Y } )  .(+)  ( N `  { Z } ) )  i^i  ( ( N `  { ( X  .-  Y ) } ) 
.(+)  ( N `  { ( X  .-  Z ) } ) ) )  ->  j  e.  ( N `  {
( Y  .-  Z
) } ) ) )
7271ssrdv 3462 . 2  |-  ( ph  ->  ( ( ( N `
 { Y }
)  .(+)  ( N `  { Z } ) )  i^i  ( ( N `
 { ( X 
.-  Y ) } )  .(+)  ( N `  { ( X  .-  Z ) } ) ) )  C_  ( N `  { ( Y  .-  Z ) } ) )
7329, 72eqssd 3473 1  |-  ( ph  ->  ( N `  {
( Y  .-  Z
) } )  =  ( ( ( N `
 { Y }
)  .(+)  ( N `  { Z } ) )  i^i  ( ( N `
 { ( X 
.-  Y ) } )  .(+)  ( N `  { ( X  .-  Z ) } ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2644   E.wrex 2796    \ cdif 3425    i^i cin 3427    C_ wss 3428   {csn 3977   {cpr 3979   ` cfv 5518  (class class class)co 6192   Basecbs 14278   +g cplusg 14342  Scalarcsca 14345   .scvsca 14346   0gc0g 14482   invgcminusg 15515   -gcsg 15517   LSSumclsm 16239   Abelcabel 16384   LModclmod 17056   LSpanclspn 17160   LVecclvec 17291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-cnex 9441  ax-resscn 9442  ax-1cn 9443  ax-icn 9444  ax-addcl 9445  ax-addrcl 9446  ax-mulcl 9447  ax-mulrcl 9448  ax-mulcom 9449  ax-addass 9450  ax-mulass 9451  ax-distr 9452  ax-i2m1 9453  ax-1ne0 9454  ax-1rid 9455  ax-rnegex 9456  ax-rrecex 9457  ax-cnre 9458  ax-pre-lttri 9459  ax-pre-lttrn 9460  ax-pre-ltadd 9461  ax-pre-mulgt0 9462
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-int 4229  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-riota 6153  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-om 6579  df-1st 6679  df-2nd 6680  df-tpos 6847  df-recs 6934  df-rdg 6968  df-er 7203  df-en 7413  df-dom 7414  df-sdom 7415  df-pnf 9523  df-mnf 9524  df-xr 9525  df-ltxr 9526  df-le 9527  df-sub 9700  df-neg 9701  df-nn 10426  df-2 10483  df-3 10484  df-ndx 14281  df-slot 14282  df-base 14283  df-sets 14284  df-ress 14285  df-plusg 14355  df-mulr 14356  df-0g 14484  df-mnd 15519  df-submnd 15569  df-grp 15649  df-minusg 15650  df-sbg 15651  df-subg 15782  df-cntz 15939  df-lsm 16241  df-cmn 16385  df-abl 16386  df-mgp 16699  df-ur 16711  df-rng 16755  df-oppr 16823  df-dvdsr 16841  df-unit 16842  df-invr 16872  df-drng 16942  df-lmod 17058  df-lss 17122  df-lsp 17161  df-lvec 17292
This theorem is referenced by:  baerlem3  35666
  Copyright terms: Public domain W3C validator