MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axunnd Structured version   Unicode version

Theorem axunnd 8971
Description: A version of the Axiom of Union with no distinct variable conditions. (Contributed by NM, 2-Jan-2002.)
Assertion
Ref Expression
axunnd  |-  E. x A. y ( E. x
( y  e.  x  /\  x  e.  z
)  ->  y  e.  x )

Proof of Theorem axunnd
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 axunndlem1 8970 . . . 4  |-  E. w A. y ( E. w
( y  e.  w  /\  w  e.  z
)  ->  y  e.  w )
2 nfnae 2031 . . . . . 6  |-  F/ x  -.  A. x  x  =  y
3 nfnae 2031 . . . . . 6  |-  F/ x  -.  A. x  x  =  z
42, 3nfan 1875 . . . . 5  |-  F/ x
( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )
5 nfnae 2031 . . . . . . 7  |-  F/ y  -.  A. x  x  =  y
6 nfnae 2031 . . . . . . 7  |-  F/ y  -.  A. x  x  =  z
75, 6nfan 1875 . . . . . 6  |-  F/ y ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )
8 nfv 1683 . . . . . . . 8  |-  F/ w
( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )
9 nfcvf 2654 . . . . . . . . . . 11  |-  ( -. 
A. x  x  =  y  ->  F/_ x y )
109adantr 465 . . . . . . . . . 10  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/_ x y )
11 nfcvd 2630 . . . . . . . . . 10  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/_ x w )
1210, 11nfeld 2637 . . . . . . . . 9  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/ x  y  e.  w )
13 nfcvf 2654 . . . . . . . . . . 11  |-  ( -. 
A. x  x  =  z  ->  F/_ x z )
1413adantl 466 . . . . . . . . . 10  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/_ x z )
1511, 14nfeld 2637 . . . . . . . . 9  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/ x  w  e.  z )
1612, 15nfand 1872 . . . . . . . 8  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/ x
( y  e.  w  /\  w  e.  z
) )
178, 16nfexd 1899 . . . . . . 7  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/ x E. w ( y  e.  w  /\  w  e.  z ) )
1817, 12nfimd 1864 . . . . . 6  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/ x
( E. w ( y  e.  w  /\  w  e.  z )  ->  y  e.  w ) )
197, 18nfald 1898 . . . . 5  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/ x A. y ( E. w
( y  e.  w  /\  w  e.  z
)  ->  y  e.  w ) )
20 nfcvd 2630 . . . . . . . . 9  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/_ y w )
21 nfcvf2 2655 . . . . . . . . . 10  |-  ( -. 
A. x  x  =  y  ->  F/_ y x )
2221adantr 465 . . . . . . . . 9  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/_ y x )
2320, 22nfeqd 2636 . . . . . . . 8  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/ y  w  =  x )
247, 23nfan1 1874 . . . . . . 7  |-  F/ y ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  w  =  x )
25 elequ2 1772 . . . . . . . . . . . 12  |-  ( w  =  x  ->  (
y  e.  w  <->  y  e.  x ) )
26 elequ1 1770 . . . . . . . . . . . 12  |-  ( w  =  x  ->  (
w  e.  z  <->  x  e.  z ) )
2725, 26anbi12d 710 . . . . . . . . . . 11  |-  ( w  =  x  ->  (
( y  e.  w  /\  w  e.  z
)  <->  ( y  e.  x  /\  x  e.  z ) ) )
2827a1i 11 . . . . . . . . . 10  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  ( w  =  x  ->  ( ( y  e.  w  /\  w  e.  z )  <->  ( y  e.  x  /\  x  e.  z )
) ) )
294, 16, 28cbvexd 1999 . . . . . . . . 9  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  ( E. w ( y  e.  w  /\  w  e.  z )  <->  E. x
( y  e.  x  /\  x  e.  z
) ) )
3029adantr 465 . . . . . . . 8  |-  ( ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  w  =  x )  ->  ( E. w ( y  e.  w  /\  w  e.  z )  <->  E. x
( y  e.  x  /\  x  e.  z
) ) )
3125adantl 466 . . . . . . . 8  |-  ( ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  w  =  x )  ->  (
y  e.  w  <->  y  e.  x ) )
3230, 31imbi12d 320 . . . . . . 7  |-  ( ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  w  =  x )  ->  (
( E. w ( y  e.  w  /\  w  e.  z )  ->  y  e.  w )  <-> 
( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) ) )
3324, 32albid 1833 . . . . . 6  |-  ( ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  w  =  x )  ->  ( A. y ( E. w
( y  e.  w  /\  w  e.  z
)  ->  y  e.  w )  <->  A. y
( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) ) )
3433ex 434 . . . . 5  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  ( w  =  x  ->  ( A. y ( E. w
( y  e.  w  /\  w  e.  z
)  ->  y  e.  w )  <->  A. y
( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) ) ) )
354, 19, 34cbvexd 1999 . . . 4  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  ( E. w A. y ( E. w ( y  e.  w  /\  w  e.  z )  ->  y  e.  w )  <->  E. x A. y ( E. x
( y  e.  x  /\  x  e.  z
)  ->  y  e.  x ) ) )
361, 35mpbii 211 . . 3  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  E. x A. y ( E. x
( y  e.  x  /\  x  e.  z
)  ->  y  e.  x ) )
3736ex 434 . 2  |-  ( -. 
A. x  x  =  y  ->  ( -.  A. x  x  =  z  ->  E. x A. y
( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) ) )
38 nfae 2029 . . . 4  |-  F/ y A. x  x  =  y
39 nfae 2029 . . . . . 6  |-  F/ x A. x  x  =  y
40 elirrv 8023 . . . . . . . . 9  |-  -.  y  e.  y
41 elequ2 1772 . . . . . . . . 9  |-  ( x  =  y  ->  (
y  e.  x  <->  y  e.  y ) )
4240, 41mtbiri 303 . . . . . . . 8  |-  ( x  =  y  ->  -.  y  e.  x )
4342intnanrd 915 . . . . . . 7  |-  ( x  =  y  ->  -.  ( y  e.  x  /\  x  e.  z
) )
4443sps 1814 . . . . . 6  |-  ( A. x  x  =  y  ->  -.  ( y  e.  x  /\  x  e.  z ) )
4539, 44nexd 1831 . . . . 5  |-  ( A. x  x  =  y  ->  -.  E. x ( y  e.  x  /\  x  e.  z )
)
4645pm2.21d 106 . . . 4  |-  ( A. x  x  =  y  ->  ( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) )
4738, 46alrimi 1825 . . 3  |-  ( A. x  x  =  y  ->  A. y ( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) )
48 19.8a 1806 . . 3  |-  ( A. y ( E. x
( y  e.  x  /\  x  e.  z
)  ->  y  e.  x )  ->  E. x A. y ( E. x
( y  e.  x  /\  x  e.  z
)  ->  y  e.  x ) )
4947, 48syl 16 . 2  |-  ( A. x  x  =  y  ->  E. x A. y
( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) )
50 nfae 2029 . . . 4  |-  F/ y A. x  x  =  z
51 nfae 2029 . . . . . 6  |-  F/ x A. x  x  =  z
52 elirrv 8023 . . . . . . . . 9  |-  -.  z  e.  z
53 elequ1 1770 . . . . . . . . 9  |-  ( x  =  z  ->  (
x  e.  z  <->  z  e.  z ) )
5452, 53mtbiri 303 . . . . . . . 8  |-  ( x  =  z  ->  -.  x  e.  z )
5554intnand 914 . . . . . . 7  |-  ( x  =  z  ->  -.  ( y  e.  x  /\  x  e.  z
) )
5655sps 1814 . . . . . 6  |-  ( A. x  x  =  z  ->  -.  ( y  e.  x  /\  x  e.  z ) )
5751, 56nexd 1831 . . . . 5  |-  ( A. x  x  =  z  ->  -.  E. x ( y  e.  x  /\  x  e.  z )
)
5857pm2.21d 106 . . . 4  |-  ( A. x  x  =  z  ->  ( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) )
5950, 58alrimi 1825 . . 3  |-  ( A. x  x  =  z  ->  A. y ( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) )
6059, 48syl 16 . 2  |-  ( A. x  x  =  z  ->  E. x A. y
( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) )
6137, 49, 60pm2.61ii 165 1  |-  E. x A. y ( E. x
( y  e.  x  /\  x  e.  z
)  ->  y  e.  x )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1377   E.wex 1596   F/_wnfc 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686  ax-un 6576  ax-reg 8018
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-br 4448  df-opab 4506  df-eprel 4791  df-fr 4838
This theorem is referenced by:  zfcndun  8993  axunprim  28578
  Copyright terms: Public domain W3C validator