MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axunnd Structured version   Visualization version   Unicode version

Theorem axunnd 9052
Description: A version of the Axiom of Union with no distinct variable conditions. (Contributed by NM, 2-Jan-2002.)
Assertion
Ref Expression
axunnd  |-  E. x A. y ( E. x
( y  e.  x  /\  x  e.  z
)  ->  y  e.  x )

Proof of Theorem axunnd
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 axunndlem1 9051 . . . 4  |-  E. w A. y ( E. w
( y  e.  w  /\  w  e.  z
)  ->  y  e.  w )
2 nfnae 2163 . . . . . 6  |-  F/ x  -.  A. x  x  =  y
3 nfnae 2163 . . . . . 6  |-  F/ x  -.  A. x  x  =  z
42, 3nfan 2022 . . . . 5  |-  F/ x
( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )
5 nfnae 2163 . . . . . . 7  |-  F/ y  -.  A. x  x  =  y
6 nfnae 2163 . . . . . . 7  |-  F/ y  -.  A. x  x  =  z
75, 6nfan 2022 . . . . . 6  |-  F/ y ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )
8 nfv 1772 . . . . . . . 8  |-  F/ w
( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )
9 nfcvf 2626 . . . . . . . . . . 11  |-  ( -. 
A. x  x  =  y  ->  F/_ x y )
109adantr 471 . . . . . . . . . 10  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/_ x y )
11 nfcvd 2604 . . . . . . . . . 10  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/_ x w )
1210, 11nfeld 2611 . . . . . . . . 9  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/ x  y  e.  w )
13 nfcvf 2626 . . . . . . . . . . 11  |-  ( -. 
A. x  x  =  z  ->  F/_ x z )
1413adantl 472 . . . . . . . . . 10  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/_ x z )
1511, 14nfeld 2611 . . . . . . . . 9  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/ x  w  e.  z )
1612, 15nfand 2019 . . . . . . . 8  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/ x
( y  e.  w  /\  w  e.  z
) )
178, 16nfexd 2046 . . . . . . 7  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/ x E. w ( y  e.  w  /\  w  e.  z ) )
1817, 12nfimd 2011 . . . . . 6  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/ x
( E. w ( y  e.  w  /\  w  e.  z )  ->  y  e.  w ) )
197, 18nfald 2045 . . . . 5  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/ x A. y ( E. w
( y  e.  w  /\  w  e.  z
)  ->  y  e.  w ) )
20 nfcvd 2604 . . . . . . . . 9  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/_ y w )
21 nfcvf2 2627 . . . . . . . . . 10  |-  ( -. 
A. x  x  =  y  ->  F/_ y x )
2221adantr 471 . . . . . . . . 9  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/_ y x )
2320, 22nfeqd 2610 . . . . . . . 8  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/ y  w  =  x )
247, 23nfan1 2021 . . . . . . 7  |-  F/ y ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  w  =  x )
25 elequ2 1912 . . . . . . . . . . . 12  |-  ( w  =  x  ->  (
y  e.  w  <->  y  e.  x ) )
26 elequ1 1905 . . . . . . . . . . . 12  |-  ( w  =  x  ->  (
w  e.  z  <->  x  e.  z ) )
2725, 26anbi12d 722 . . . . . . . . . . 11  |-  ( w  =  x  ->  (
( y  e.  w  /\  w  e.  z
)  <->  ( y  e.  x  /\  x  e.  z ) ) )
2827a1i 11 . . . . . . . . . 10  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  ( w  =  x  ->  ( ( y  e.  w  /\  w  e.  z )  <->  ( y  e.  x  /\  x  e.  z )
) ) )
294, 16, 28cbvexd 2130 . . . . . . . . 9  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  ( E. w ( y  e.  w  /\  w  e.  z )  <->  E. x
( y  e.  x  /\  x  e.  z
) ) )
3029adantr 471 . . . . . . . 8  |-  ( ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  w  =  x )  ->  ( E. w ( y  e.  w  /\  w  e.  z )  <->  E. x
( y  e.  x  /\  x  e.  z
) ) )
3125adantl 472 . . . . . . . 8  |-  ( ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  w  =  x )  ->  (
y  e.  w  <->  y  e.  x ) )
3230, 31imbi12d 326 . . . . . . 7  |-  ( ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  w  =  x )  ->  (
( E. w ( y  e.  w  /\  w  e.  z )  ->  y  e.  w )  <-> 
( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) ) )
3324, 32albid 1974 . . . . . 6  |-  ( ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  w  =  x )  ->  ( A. y ( E. w
( y  e.  w  /\  w  e.  z
)  ->  y  e.  w )  <->  A. y
( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) ) )
3433ex 440 . . . . 5  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  ( w  =  x  ->  ( A. y ( E. w
( y  e.  w  /\  w  e.  z
)  ->  y  e.  w )  <->  A. y
( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) ) ) )
354, 19, 34cbvexd 2130 . . . 4  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  ( E. w A. y ( E. w ( y  e.  w  /\  w  e.  z )  ->  y  e.  w )  <->  E. x A. y ( E. x
( y  e.  x  /\  x  e.  z
)  ->  y  e.  x ) ) )
361, 35mpbii 216 . . 3  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  E. x A. y ( E. x
( y  e.  x  /\  x  e.  z
)  ->  y  e.  x ) )
3736ex 440 . 2  |-  ( -. 
A. x  x  =  y  ->  ( -.  A. x  x  =  z  ->  E. x A. y
( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) ) )
38 nfae 2161 . . . 4  |-  F/ y A. x  x  =  y
39 nfae 2161 . . . . . 6  |-  F/ x A. x  x  =  y
40 elirrv 8143 . . . . . . . . 9  |-  -.  y  e.  y
41 elequ2 1912 . . . . . . . . 9  |-  ( x  =  y  ->  (
y  e.  x  <->  y  e.  y ) )
4240, 41mtbiri 309 . . . . . . . 8  |-  ( x  =  y  ->  -.  y  e.  x )
4342intnanrd 933 . . . . . . 7  |-  ( x  =  y  ->  -.  ( y  e.  x  /\  x  e.  z
) )
4443sps 1954 . . . . . 6  |-  ( A. x  x  =  y  ->  -.  ( y  e.  x  /\  x  e.  z ) )
4539, 44nexd 1972 . . . . 5  |-  ( A. x  x  =  y  ->  -.  E. x ( y  e.  x  /\  x  e.  z )
)
4645pm2.21d 110 . . . 4  |-  ( A. x  x  =  y  ->  ( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) )
4738, 46alrimi 1966 . . 3  |-  ( A. x  x  =  y  ->  A. y ( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) )
48 19.8a 1946 . . 3  |-  ( A. y ( E. x
( y  e.  x  /\  x  e.  z
)  ->  y  e.  x )  ->  E. x A. y ( E. x
( y  e.  x  /\  x  e.  z
)  ->  y  e.  x ) )
4947, 48syl 17 . 2  |-  ( A. x  x  =  y  ->  E. x A. y
( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) )
50 nfae 2161 . . . 4  |-  F/ y A. x  x  =  z
51 nfae 2161 . . . . . 6  |-  F/ x A. x  x  =  z
52 elirrv 8143 . . . . . . . . 9  |-  -.  z  e.  z
53 elequ1 1905 . . . . . . . . 9  |-  ( x  =  z  ->  (
x  e.  z  <->  z  e.  z ) )
5452, 53mtbiri 309 . . . . . . . 8  |-  ( x  =  z  ->  -.  x  e.  z )
5554intnand 932 . . . . . . 7  |-  ( x  =  z  ->  -.  ( y  e.  x  /\  x  e.  z
) )
5655sps 1954 . . . . . 6  |-  ( A. x  x  =  z  ->  -.  ( y  e.  x  /\  x  e.  z ) )
5751, 56nexd 1972 . . . . 5  |-  ( A. x  x  =  z  ->  -.  E. x ( y  e.  x  /\  x  e.  z )
)
5857pm2.21d 110 . . . 4  |-  ( A. x  x  =  z  ->  ( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) )
5950, 58alrimi 1966 . . 3  |-  ( A. x  x  =  z  ->  A. y ( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) )
6059, 48syl 17 . 2  |-  ( A. x  x  =  z  ->  E. x A. y
( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) )
6137, 49, 60pm2.61ii 170 1  |-  E. x A. y ( E. x
( y  e.  x  /\  x  e.  z
)  ->  y  e.  x )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 375   A.wal 1453   E.wex 1674   F/_wnfc 2590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-sep 4541  ax-nul 4550  ax-pr 4656  ax-un 6615  ax-reg 8138
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-rab 2758  df-v 3059  df-sbc 3280  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3744  df-if 3894  df-sn 3981  df-pr 3983  df-op 3987  df-br 4419  df-opab 4478  df-eprel 4767  df-fr 4815
This theorem is referenced by:  zfcndun  9071  axunprim  30380
  Copyright terms: Public domain W3C validator