MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axsup Structured version   Unicode version

Theorem axsup 9672
Description: A nonempty, bounded-above set of reals has a supremum. Axiom 22 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-sup 9582 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
axsup  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <  x
)  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  A  y  <  z ) ) )
Distinct variable group:    x, y, z, A

Proof of Theorem axsup
StepHypRef Expression
1 ax-pre-sup 9582 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <RR  x )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
213expia 1198 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/) )  ->  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) ) )
3 ssel2 3504 . . . . . . . 8  |-  ( ( A  C_  RR  /\  y  e.  A )  ->  y  e.  RR )
4 ltxrlt 9667 . . . . . . . 8  |-  ( ( y  e.  RR  /\  x  e.  RR )  ->  ( y  <  x  <->  y 
<RR  x ) )
53, 4sylan 471 . . . . . . 7  |-  ( ( ( A  C_  RR  /\  y  e.  A )  /\  x  e.  RR )  ->  ( y  < 
x  <->  y  <RR  x ) )
65an32s 802 . . . . . 6  |-  ( ( ( A  C_  RR  /\  x  e.  RR )  /\  y  e.  A
)  ->  ( y  <  x  <->  y  <RR  x ) )
76ralbidva 2903 . . . . 5  |-  ( ( A  C_  RR  /\  x  e.  RR )  ->  ( A. y  e.  A  y  <  x  <->  A. y  e.  A  y  <RR  x ) )
87rexbidva 2975 . . . 4  |-  ( A 
C_  RR  ->  ( E. x  e.  RR  A. y  e.  A  y  <  x  <->  E. x  e.  RR  A. y  e.  A  y 
<RR  x ) )
98adantr 465 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/) )  ->  ( E. x  e.  RR  A. y  e.  A  y  <  x  <->  E. x  e.  RR  A. y  e.  A  y  <RR  x ) )
10 ltxrlt 9667 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  <  y  <->  x 
<RR  y ) )
1110ancoms 453 . . . . . . . . . 10  |-  ( ( y  e.  RR  /\  x  e.  RR )  ->  ( x  <  y  <->  x 
<RR  y ) )
123, 11sylan 471 . . . . . . . . 9  |-  ( ( ( A  C_  RR  /\  y  e.  A )  /\  x  e.  RR )  ->  ( x  < 
y  <->  x  <RR  y ) )
1312an32s 802 . . . . . . . 8  |-  ( ( ( A  C_  RR  /\  x  e.  RR )  /\  y  e.  A
)  ->  ( x  <  y  <->  x  <RR  y ) )
1413notbid 294 . . . . . . 7  |-  ( ( ( A  C_  RR  /\  x  e.  RR )  /\  y  e.  A
)  ->  ( -.  x  <  y  <->  -.  x  <RR  y ) )
1514ralbidva 2903 . . . . . 6  |-  ( ( A  C_  RR  /\  x  e.  RR )  ->  ( A. y  e.  A  -.  x  <  y  <->  A. y  e.  A  -.  x  <RR  y ) )
164ancoms 453 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( y  <  x  <->  y 
<RR  x ) )
1716adantll 713 . . . . . . . 8  |-  ( ( ( A  C_  RR  /\  x  e.  RR )  /\  y  e.  RR )  ->  ( y  < 
x  <->  y  <RR  x ) )
18 ssel2 3504 . . . . . . . . . . . 12  |-  ( ( A  C_  RR  /\  z  e.  A )  ->  z  e.  RR )
19 ltxrlt 9667 . . . . . . . . . . . . 13  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( y  <  z  <->  y 
<RR  z ) )
2019ancoms 453 . . . . . . . . . . . 12  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  ( y  <  z  <->  y 
<RR  z ) )
2118, 20sylan 471 . . . . . . . . . . 11  |-  ( ( ( A  C_  RR  /\  z  e.  A )  /\  y  e.  RR )  ->  ( y  < 
z  <->  y  <RR  z ) )
2221an32s 802 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  y  e.  RR )  /\  z  e.  A
)  ->  ( y  <  z  <->  y  <RR  z ) )
2322rexbidva 2975 . . . . . . . . 9  |-  ( ( A  C_  RR  /\  y  e.  RR )  ->  ( E. z  e.  A  y  <  z  <->  E. z  e.  A  y  <RR  z ) )
2423adantlr 714 . . . . . . . 8  |-  ( ( ( A  C_  RR  /\  x  e.  RR )  /\  y  e.  RR )  ->  ( E. z  e.  A  y  <  z  <->  E. z  e.  A  y  <RR  z ) )
2517, 24imbi12d 320 . . . . . . 7  |-  ( ( ( A  C_  RR  /\  x  e.  RR )  /\  y  e.  RR )  ->  ( ( y  <  x  ->  E. z  e.  A  y  <  z )  <->  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
2625ralbidva 2903 . . . . . 6  |-  ( ( A  C_  RR  /\  x  e.  RR )  ->  ( A. y  e.  RR  ( y  <  x  ->  E. z  e.  A  y  <  z )  <->  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
2715, 26anbi12d 710 . . . . 5  |-  ( ( A  C_  RR  /\  x  e.  RR )  ->  (
( A. y  e.  A  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  A  y  <  z ) )  <->  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) ) )
2827rexbidva 2975 . . . 4  |-  ( A 
C_  RR  ->  ( E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) ) )
2928adantr 465 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/) )  ->  ( E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) ) )
302, 9, 293imtr4d 268 . 2  |-  ( ( A  C_  RR  /\  A  =/=  (/) )  ->  ( E. x  e.  RR  A. y  e.  A  y  <  x  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  A  y  <  z ) ) ) )
31303impia 1193 1  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <  x
)  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  A  y  <  z ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    e. wcel 1767    =/= wne 2662   A.wral 2817   E.wrex 2818    C_ wss 3481   (/)c0 3790   class class class wbr 4453   RRcr 9503    <RR cltrr 9508    < clt 9640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-resscn 9561  ax-pre-sup 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-ltxr 9645
This theorem is referenced by:  dedekind  9755  sup2  10511
  Copyright terms: Public domain W3C validator