MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axsegconlem7 Structured version   Unicode version

Theorem axsegconlem7 23188
Description: Lemma for axsegcon 23192. Show that a particular ratio of distances is in the closed unit interval. (Contributed by Scott Fenton, 18-Sep-2013.)
Hypotheses
Ref Expression
axsegconlem2.1  |-  S  = 
sum_ p  e.  (
1 ... N ) ( ( ( A `  p )  -  ( B `  p )
) ^ 2 )
axsegconlem7.2  |-  T  = 
sum_ p  e.  (
1 ... N ) ( ( ( C `  p )  -  ( D `  p )
) ^ 2 )
Assertion
Ref Expression
axsegconlem7  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  (
( sqr `  S
)  /  ( ( sqr `  S )  +  ( sqr `  T
) ) )  e.  ( 0 [,] 1
) )
Distinct variable groups:    A, p    B, p    C, p    D, p    N, p
Allowed substitution hints:    S( p)    T( p)

Proof of Theorem axsegconlem7
StepHypRef Expression
1 axsegconlem7.2 . . . . 5  |-  T  = 
sum_ p  e.  (
1 ... N ) ( ( ( C `  p )  -  ( D `  p )
) ^ 2 )
21axsegconlem5 23186 . . . 4  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
0  <_  ( sqr `  T ) )
32adantl 466 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  0  <_  ( sqr `  T
) )
4 axsegconlem2.1 . . . . . 6  |-  S  = 
sum_ p  e.  (
1 ... N ) ( ( ( A `  p )  -  ( B `  p )
) ^ 2 )
54axsegconlem4 23185 . . . . 5  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( sqr `  S
)  e.  RR )
653adant3 1008 . . . 4  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B )  ->  ( sqr `  S )  e.  RR )
71axsegconlem4 23185 . . . 4  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( sqr `  T
)  e.  RR )
8 addge01 9868 . . . 4  |-  ( ( ( sqr `  S
)  e.  RR  /\  ( sqr `  T )  e.  RR )  -> 
( 0  <_  ( sqr `  T )  <->  ( sqr `  S )  <_  (
( sqr `  S
)  +  ( sqr `  T ) ) ) )
96, 7, 8syl2an 477 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  (
0  <_  ( sqr `  T )  <->  ( sqr `  S )  <_  (
( sqr `  S
)  +  ( sqr `  T ) ) ) )
103, 9mpbid 210 . 2  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  ( sqr `  S )  <_ 
( ( sqr `  S
)  +  ( sqr `  T ) ) )
116adantr 465 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  ( sqr `  S )  e.  RR )
124axsegconlem5 23186 . . . . 5  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
0  <_  ( sqr `  S ) )
13123adant3 1008 . . . 4  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B )  ->  0  <_  ( sqr `  S
) )
1413adantr 465 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  0  <_  ( sqr `  S
) )
15 readdcl 9384 . . . 4  |-  ( ( ( sqr `  S
)  e.  RR  /\  ( sqr `  T )  e.  RR )  -> 
( ( sqr `  S
)  +  ( sqr `  T ) )  e.  RR )
166, 7, 15syl2an 477 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  (
( sqr `  S
)  +  ( sqr `  T ) )  e.  RR )
17 0re 9405 . . . . 5  |-  0  e.  RR
1817a1i 11 . . . 4  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  0  e.  RR )
194axsegconlem6 23187 . . . . 5  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B )  ->  0  <  ( sqr `  S
) )
2019adantr 465 . . . 4  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  0  <  ( sqr `  S
) )
2118, 11, 16, 20, 10ltletrd 9550 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  0  <  ( ( sqr `  S
)  +  ( sqr `  T ) ) )
22 divelunit 11446 . . 3  |-  ( ( ( ( sqr `  S
)  e.  RR  /\  0  <_  ( sqr `  S
) )  /\  (
( ( sqr `  S
)  +  ( sqr `  T ) )  e.  RR  /\  0  < 
( ( sqr `  S
)  +  ( sqr `  T ) ) ) )  ->  ( (
( sqr `  S
)  /  ( ( sqr `  S )  +  ( sqr `  T
) ) )  e.  ( 0 [,] 1
)  <->  ( sqr `  S
)  <_  ( ( sqr `  S )  +  ( sqr `  T
) ) ) )
2311, 14, 16, 21, 22syl22anc 1219 . 2  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  (
( ( sqr `  S
)  /  ( ( sqr `  S )  +  ( sqr `  T
) ) )  e.  ( 0 [,] 1
)  <->  ( sqr `  S
)  <_  ( ( sqr `  S )  +  ( sqr `  T
) ) ) )
2410, 23mpbird 232 1  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  (
( sqr `  S
)  /  ( ( sqr `  S )  +  ( sqr `  T
) ) )  e.  ( 0 [,] 1
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2620   class class class wbr 4311   ` cfv 5437  (class class class)co 6110   RRcr 9300   0cc0 9301   1c1 9302    + caddc 9304    < clt 9437    <_ cle 9438    - cmin 9614    / cdiv 10012   2c2 10390   [,]cicc 11322   ...cfz 11456   ^cexp 11884   sqrcsqr 12741   sum_csu 13182   EEcee 23153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4422  ax-sep 4432  ax-nul 4440  ax-pow 4489  ax-pr 4550  ax-un 6391  ax-inf2 7866  ax-cnex 9357  ax-resscn 9358  ax-1cn 9359  ax-icn 9360  ax-addcl 9361  ax-addrcl 9362  ax-mulcl 9363  ax-mulrcl 9364  ax-mulcom 9365  ax-addass 9366  ax-mulass 9367  ax-distr 9368  ax-i2m1 9369  ax-1ne0 9370  ax-1rid 9371  ax-rnegex 9372  ax-rrecex 9373  ax-cnre 9374  ax-pre-lttri 9375  ax-pre-lttrn 9376  ax-pre-ltadd 9377  ax-pre-mulgt0 9378  ax-pre-sup 9379
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2739  df-rex 2740  df-reu 2741  df-rmo 2742  df-rab 2743  df-v 2993  df-sbc 3206  df-csb 3308  df-dif 3350  df-un 3352  df-in 3354  df-ss 3361  df-pss 3363  df-nul 3657  df-if 3811  df-pw 3881  df-sn 3897  df-pr 3899  df-tp 3901  df-op 3903  df-uni 4111  df-int 4148  df-iun 4192  df-br 4312  df-opab 4370  df-mpt 4371  df-tr 4405  df-eprel 4651  df-id 4655  df-po 4660  df-so 4661  df-fr 4698  df-se 4699  df-we 4700  df-ord 4741  df-on 4742  df-lim 4743  df-suc 4744  df-xp 4865  df-rel 4866  df-cnv 4867  df-co 4868  df-dm 4869  df-rn 4870  df-res 4871  df-ima 4872  df-iota 5400  df-fun 5439  df-fn 5440  df-f 5441  df-f1 5442  df-fo 5443  df-f1o 5444  df-fv 5445  df-isom 5446  df-riota 6071  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-om 6496  df-1st 6596  df-2nd 6597  df-recs 6851  df-rdg 6885  df-1o 6939  df-oadd 6943  df-er 7120  df-map 7235  df-en 7330  df-dom 7331  df-sdom 7332  df-fin 7333  df-sup 7710  df-oi 7743  df-card 8128  df-pnf 9439  df-mnf 9440  df-xr 9441  df-ltxr 9442  df-le 9443  df-sub 9616  df-neg 9617  df-div 10013  df-nn 10342  df-2 10399  df-3 10400  df-n0 10599  df-z 10666  df-uz 10881  df-rp 11011  df-ico 11325  df-icc 11326  df-fz 11457  df-fzo 11568  df-seq 11826  df-exp 11885  df-hash 12123  df-cj 12607  df-re 12608  df-im 12609  df-sqr 12743  df-abs 12744  df-clim 12985  df-sum 13183  df-ee 23156
This theorem is referenced by:  axsegcon  23192
  Copyright terms: Public domain W3C validator