Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axsegconlem1 Unicode version

Theorem axsegconlem1 25760
Description: Lemma for axsegcon 25770. Handle the degenerate case. (Contributed by Scott Fenton, 7-Jun-2013.)
Assertion
Ref Expression
axsegconlem1  |-  ( ( A  =  B  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )
Distinct variable groups:    t, N, i, x    t, A, i, x    t, B, i, x    t, C, i, x    t, D, i, x

Proof of Theorem axsegconlem1
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 fveere 25744 . . . . . . . . . 10  |-  ( ( B  e.  ( EE
`  N )  /\  k  e.  ( 1 ... N ) )  ->  ( B `  k )  e.  RR )
213ad2antl1 1119 . . . . . . . . 9  |-  ( ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  k  e.  ( 1 ... N
) )  ->  ( B `  k )  e.  RR )
3 fveere 25744 . . . . . . . . . . 11  |-  ( ( C  e.  ( EE
`  N )  /\  k  e.  ( 1 ... N ) )  ->  ( C `  k )  e.  RR )
433ad2antl2 1120 . . . . . . . . . 10  |-  ( ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  k  e.  ( 1 ... N
) )  ->  ( C `  k )  e.  RR )
5 fveere 25744 . . . . . . . . . . 11  |-  ( ( D  e.  ( EE
`  N )  /\  k  e.  ( 1 ... N ) )  ->  ( D `  k )  e.  RR )
653ad2antl3 1121 . . . . . . . . . 10  |-  ( ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  k  e.  ( 1 ... N
) )  ->  ( D `  k )  e.  RR )
74, 6resubcld 9421 . . . . . . . . 9  |-  ( ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  k  e.  ( 1 ... N
) )  ->  (
( C `  k
)  -  ( D `
 k ) )  e.  RR )
82, 7resubcld 9421 . . . . . . . 8  |-  ( ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  k  e.  ( 1 ... N
) )  ->  (
( B `  k
)  -  ( ( C `  k )  -  ( D `  k ) ) )  e.  RR )
98ralrimiva 2749 . . . . . . 7  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  ->  A. k  e.  ( 1 ... N
) ( ( B `
 k )  -  ( ( C `  k )  -  ( D `  k )
) )  e.  RR )
10 eleenn 25739 . . . . . . . . 9  |-  ( B  e.  ( EE `  N )  ->  N  e.  NN )
11 mptelee 25738 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( k  e.  ( 1 ... N ) 
|->  ( ( B `  k )  -  (
( C `  k
)  -  ( D `
 k ) ) ) )  e.  ( EE `  N )  <->  A. k  e.  (
1 ... N ) ( ( B `  k
)  -  ( ( C `  k )  -  ( D `  k ) ) )  e.  RR ) )
1210, 11syl 16 . . . . . . . 8  |-  ( B  e.  ( EE `  N )  ->  (
( k  e.  ( 1 ... N ) 
|->  ( ( B `  k )  -  (
( C `  k
)  -  ( D `
 k ) ) ) )  e.  ( EE `  N )  <->  A. k  e.  (
1 ... N ) ( ( B `  k
)  -  ( ( C `  k )  -  ( D `  k ) ) )  e.  RR ) )
13123ad2ant1 978 . . . . . . 7  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  ->  (
( k  e.  ( 1 ... N ) 
|->  ( ( B `  k )  -  (
( C `  k
)  -  ( D `
 k ) ) ) )  e.  ( EE `  N )  <->  A. k  e.  (
1 ... N ) ( ( B `  k
)  -  ( ( C `  k )  -  ( D `  k ) ) )  e.  RR ) )
149, 13mpbird 224 . . . . . 6  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  ->  (
k  e.  ( 1 ... N )  |->  ( ( B `  k
)  -  ( ( C `  k )  -  ( D `  k ) ) ) )  e.  ( EE
`  N ) )
15 fveecn 25745 . . . . . . . . 9  |-  ( ( B  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( B `  i )  e.  CC )
16153ad2antl1 1119 . . . . . . . 8  |-  ( ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  ( B `  i )  e.  CC )
17 fveecn 25745 . . . . . . . . 9  |-  ( ( C  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( C `  i )  e.  CC )
18173ad2antl2 1120 . . . . . . . 8  |-  ( ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  ( C `  i )  e.  CC )
19 fveecn 25745 . . . . . . . . 9  |-  ( ( D  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( D `  i )  e.  CC )
20193ad2antl3 1121 . . . . . . . 8  |-  ( ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  ( D `  i )  e.  CC )
21 ax-1cn 9004 . . . . . . . . . . . . 13  |-  1  e.  CC
2221subid1i 9328 . . . . . . . . . . . 12  |-  ( 1  -  0 )  =  1
2322oveq1i 6050 . . . . . . . . . . 11  |-  ( ( 1  -  0 )  x.  ( B `  i ) )  =  ( 1  x.  ( B `  i )
)
24 mulid2 9045 . . . . . . . . . . . 12  |-  ( ( B `  i )  e.  CC  ->  (
1  x.  ( B `
 i ) )  =  ( B `  i ) )
25243ad2ant1 978 . . . . . . . . . . 11  |-  ( ( ( B `  i
)  e.  CC  /\  ( C `  i )  e.  CC  /\  ( D `  i )  e.  CC )  ->  (
1  x.  ( B `
 i ) )  =  ( B `  i ) )
2623, 25syl5eq 2448 . . . . . . . . . 10  |-  ( ( ( B `  i
)  e.  CC  /\  ( C `  i )  e.  CC  /\  ( D `  i )  e.  CC )  ->  (
( 1  -  0 )  x.  ( B `
 i ) )  =  ( B `  i ) )
27 subcl 9261 . . . . . . . . . . . . 13  |-  ( ( ( C `  i
)  e.  CC  /\  ( D `  i )  e.  CC )  -> 
( ( C `  i )  -  ( D `  i )
)  e.  CC )
28 subcl 9261 . . . . . . . . . . . . 13  |-  ( ( ( B `  i
)  e.  CC  /\  ( ( C `  i )  -  ( D `  i )
)  e.  CC )  ->  ( ( B `
 i )  -  ( ( C `  i )  -  ( D `  i )
) )  e.  CC )
2927, 28sylan2 461 . . . . . . . . . . . 12  |-  ( ( ( B `  i
)  e.  CC  /\  ( ( C `  i )  e.  CC  /\  ( D `  i
)  e.  CC ) )  ->  ( ( B `  i )  -  ( ( C `
 i )  -  ( D `  i ) ) )  e.  CC )
30293impb 1149 . . . . . . . . . . 11  |-  ( ( ( B `  i
)  e.  CC  /\  ( C `  i )  e.  CC  /\  ( D `  i )  e.  CC )  ->  (
( B `  i
)  -  ( ( C `  i )  -  ( D `  i ) ) )  e.  CC )
3130mul02d 9220 . . . . . . . . . 10  |-  ( ( ( B `  i
)  e.  CC  /\  ( C `  i )  e.  CC  /\  ( D `  i )  e.  CC )  ->  (
0  x.  ( ( B `  i )  -  ( ( C `
 i )  -  ( D `  i ) ) ) )  =  0 )
3226, 31oveq12d 6058 . . . . . . . . 9  |-  ( ( ( B `  i
)  e.  CC  /\  ( C `  i )  e.  CC  /\  ( D `  i )  e.  CC )  ->  (
( ( 1  -  0 )  x.  ( B `  i )
)  +  ( 0  x.  ( ( B `
 i )  -  ( ( C `  i )  -  ( D `  i )
) ) ) )  =  ( ( B `
 i )  +  0 ) )
33 addid1 9202 . . . . . . . . . 10  |-  ( ( B `  i )  e.  CC  ->  (
( B `  i
)  +  0 )  =  ( B `  i ) )
34333ad2ant1 978 . . . . . . . . 9  |-  ( ( ( B `  i
)  e.  CC  /\  ( C `  i )  e.  CC  /\  ( D `  i )  e.  CC )  ->  (
( B `  i
)  +  0 )  =  ( B `  i ) )
3532, 34eqtr2d 2437 . . . . . . . 8  |-  ( ( ( B `  i
)  e.  CC  /\  ( C `  i )  e.  CC  /\  ( D `  i )  e.  CC )  ->  ( B `  i )  =  ( ( ( 1  -  0 )  x.  ( B `  i ) )  +  ( 0  x.  (
( B `  i
)  -  ( ( C `  i )  -  ( D `  i ) ) ) ) ) )
3616, 18, 20, 35syl3anc 1184 . . . . . . 7  |-  ( ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  ( B `  i )  =  ( ( ( 1  -  0 )  x.  ( B `  i ) )  +  ( 0  x.  (
( B `  i
)  -  ( ( C `  i )  -  ( D `  i ) ) ) ) ) )
3736ralrimiva 2749 . . . . . 6  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  ->  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  0 )  x.  ( B `  i )
)  +  ( 0  x.  ( ( B `
 i )  -  ( ( C `  i )  -  ( D `  i )
) ) ) ) )
3818, 20subcld 9367 . . . . . . . . 9  |-  ( ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( C `  i
)  -  ( D `
 i ) )  e.  CC )
3916, 38nncand 9372 . . . . . . . 8  |-  ( ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( B `  i
)  -  ( ( B `  i )  -  ( ( C `
 i )  -  ( D `  i ) ) ) )  =  ( ( C `  i )  -  ( D `  i )
) )
4039oveq1d 6055 . . . . . . 7  |-  ( ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( B `  i )  -  (
( B `  i
)  -  ( ( C `  i )  -  ( D `  i ) ) ) ) ^ 2 )  =  ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) )
4140sumeq2dv 12452 . . . . . 6  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( B `  i )  -  ( ( B `
 i )  -  ( ( C `  i )  -  ( D `  i )
) ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) )
42 0elunit 10971 . . . . . . 7  |-  0  e.  ( 0 [,] 1
)
43 fveq1 5686 . . . . . . . . . . . . . 14  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( B `
 k )  -  ( ( C `  k )  -  ( D `  k )
) ) )  -> 
( x `  i
)  =  ( ( k  e.  ( 1 ... N )  |->  ( ( B `  k
)  -  ( ( C `  k )  -  ( D `  k ) ) ) ) `  i ) )
44 fveq2 5687 . . . . . . . . . . . . . . . 16  |-  ( k  =  i  ->  ( B `  k )  =  ( B `  i ) )
45 fveq2 5687 . . . . . . . . . . . . . . . . 17  |-  ( k  =  i  ->  ( C `  k )  =  ( C `  i ) )
46 fveq2 5687 . . . . . . . . . . . . . . . . 17  |-  ( k  =  i  ->  ( D `  k )  =  ( D `  i ) )
4745, 46oveq12d 6058 . . . . . . . . . . . . . . . 16  |-  ( k  =  i  ->  (
( C `  k
)  -  ( D `
 k ) )  =  ( ( C `
 i )  -  ( D `  i ) ) )
4844, 47oveq12d 6058 . . . . . . . . . . . . . . 15  |-  ( k  =  i  ->  (
( B `  k
)  -  ( ( C `  k )  -  ( D `  k ) ) )  =  ( ( B `
 i )  -  ( ( C `  i )  -  ( D `  i )
) ) )
49 eqid 2404 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( 1 ... N )  |->  ( ( B `  k )  -  ( ( C `
 k )  -  ( D `  k ) ) ) )  =  ( k  e.  ( 1 ... N ) 
|->  ( ( B `  k )  -  (
( C `  k
)  -  ( D `
 k ) ) ) )
50 ovex 6065 . . . . . . . . . . . . . . 15  |-  ( ( B `  i )  -  ( ( C `
 i )  -  ( D `  i ) ) )  e.  _V
5148, 49, 50fvmpt 5765 . . . . . . . . . . . . . 14  |-  ( i  e.  ( 1 ... N )  ->  (
( k  e.  ( 1 ... N ) 
|->  ( ( B `  k )  -  (
( C `  k
)  -  ( D `
 k ) ) ) ) `  i
)  =  ( ( B `  i )  -  ( ( C `
 i )  -  ( D `  i ) ) ) )
5243, 51sylan9eq 2456 . . . . . . . . . . . . 13  |-  ( ( x  =  ( k  e.  ( 1 ... N )  |->  ( ( B `  k )  -  ( ( C `
 k )  -  ( D `  k ) ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( x `  i )  =  ( ( B `  i
)  -  ( ( C `  i )  -  ( D `  i ) ) ) )
5352oveq2d 6056 . . . . . . . . . . . 12  |-  ( ( x  =  ( k  e.  ( 1 ... N )  |->  ( ( B `  k )  -  ( ( C `
 k )  -  ( D `  k ) ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( t  x.  ( x `  i
) )  =  ( t  x.  ( ( B `  i )  -  ( ( C `
 i )  -  ( D `  i ) ) ) ) )
5453oveq2d 6056 . . . . . . . . . . 11  |-  ( ( x  =  ( k  e.  ( 1 ... N )  |->  ( ( B `  k )  -  ( ( C `
 k )  -  ( D `  k ) ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( ( ( 1  -  t )  x.  ( B `  i ) )  +  ( t  x.  (
x `  i )
) )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( ( B `
 i )  -  ( ( C `  i )  -  ( D `  i )
) ) ) ) )
5554eqeq2d 2415 . . . . . . . . . 10  |-  ( ( x  =  ( k  e.  ( 1 ... N )  |->  ( ( B `  k )  -  ( ( C `
 k )  -  ( D `  k ) ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( ( B `
 i )  =  ( ( ( 1  -  t )  x.  ( B `  i
) )  +  ( t  x.  ( x `
 i ) ) )  <->  ( B `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( ( B `
 i )  -  ( ( C `  i )  -  ( D `  i )
) ) ) ) ) )
5655ralbidva 2682 . . . . . . . . 9  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( B `
 k )  -  ( ( C `  k )  -  ( D `  k )
) ) )  -> 
( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( x `  i ) ) )  <->  A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i ) )  +  ( t  x.  (
( B `  i
)  -  ( ( C `  i )  -  ( D `  i ) ) ) ) ) ) )
5752oveq2d 6056 . . . . . . . . . . . 12  |-  ( ( x  =  ( k  e.  ( 1 ... N )  |->  ( ( B `  k )  -  ( ( C `
 k )  -  ( D `  k ) ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( ( B `
 i )  -  ( x `  i
) )  =  ( ( B `  i
)  -  ( ( B `  i )  -  ( ( C `
 i )  -  ( D `  i ) ) ) ) )
5857oveq1d 6055 . . . . . . . . . . 11  |-  ( ( x  =  ( k  e.  ( 1 ... N )  |->  ( ( B `  k )  -  ( ( C `
 k )  -  ( D `  k ) ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( ( ( B `  i )  -  ( x `  i ) ) ^
2 )  =  ( ( ( B `  i )  -  (
( B `  i
)  -  ( ( C `  i )  -  ( D `  i ) ) ) ) ^ 2 ) )
5958sumeq2dv 12452 . . . . . . . . . 10  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( B `
 k )  -  ( ( C `  k )  -  ( D `  k )
) ) )  ->  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( ( B `  i )  -  (
( C `  i
)  -  ( D `
 i ) ) ) ) ^ 2 ) )
6059eqeq1d 2412 . . . . . . . . 9  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( B `
 k )  -  ( ( C `  k )  -  ( D `  k )
) ) )  -> 
( sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 )  <->  sum_ i  e.  ( 1 ... N
) ( ( ( B `  i )  -  ( ( B `
 i )  -  ( ( C `  i )  -  ( D `  i )
) ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) )
6156, 60anbi12d 692 . . . . . . . 8  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( B `
 k )  -  ( ( C `  k )  -  ( D `  k )
) ) )  -> 
( ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) )  <->  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i ) )  +  ( t  x.  (
( B `  i
)  -  ( ( C `  i )  -  ( D `  i ) ) ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
( B `  i
)  -  ( ( C `  i )  -  ( D `  i ) ) ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) ) )
62 oveq2 6048 . . . . . . . . . . . . 13  |-  ( t  =  0  ->  (
1  -  t )  =  ( 1  -  0 ) )
6362oveq1d 6055 . . . . . . . . . . . 12  |-  ( t  =  0  ->  (
( 1  -  t
)  x.  ( B `
 i ) )  =  ( ( 1  -  0 )  x.  ( B `  i
) ) )
64 oveq1 6047 . . . . . . . . . . . 12  |-  ( t  =  0  ->  (
t  x.  ( ( B `  i )  -  ( ( C `
 i )  -  ( D `  i ) ) ) )  =  ( 0  x.  (
( B `  i
)  -  ( ( C `  i )  -  ( D `  i ) ) ) ) )
6563, 64oveq12d 6058 . . . . . . . . . . 11  |-  ( t  =  0  ->  (
( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( ( B `
 i )  -  ( ( C `  i )  -  ( D `  i )
) ) ) )  =  ( ( ( 1  -  0 )  x.  ( B `  i ) )  +  ( 0  x.  (
( B `  i
)  -  ( ( C `  i )  -  ( D `  i ) ) ) ) ) )
6665eqeq2d 2415 . . . . . . . . . 10  |-  ( t  =  0  ->  (
( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( ( B `  i )  -  (
( C `  i
)  -  ( D `
 i ) ) ) ) )  <->  ( B `  i )  =  ( ( ( 1  -  0 )  x.  ( B `  i )
)  +  ( 0  x.  ( ( B `
 i )  -  ( ( C `  i )  -  ( D `  i )
) ) ) ) ) )
6766ralbidv 2686 . . . . . . . . 9  |-  ( t  =  0  ->  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i ) )  +  ( t  x.  (
( B `  i
)  -  ( ( C `  i )  -  ( D `  i ) ) ) ) )  <->  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  0 )  x.  ( B `  i )
)  +  ( 0  x.  ( ( B `
 i )  -  ( ( C `  i )  -  ( D `  i )
) ) ) ) ) )
6867anbi1d 686 . . . . . . . 8  |-  ( t  =  0  ->  (
( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( ( B `
 i )  -  ( ( C `  i )  -  ( D `  i )
) ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( ( B `  i )  -  (
( C `  i
)  -  ( D `
 i ) ) ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) )  <->  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  0 )  x.  ( B `  i ) )  +  ( 0  x.  (
( B `  i
)  -  ( ( C `  i )  -  ( D `  i ) ) ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
( B `  i
)  -  ( ( C `  i )  -  ( D `  i ) ) ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) ) )
6961, 68rspc2ev 3020 . . . . . . 7  |-  ( ( ( k  e.  ( 1 ... N ) 
|->  ( ( B `  k )  -  (
( C `  k
)  -  ( D `
 k ) ) ) )  e.  ( EE `  N )  /\  0  e.  ( 0 [,] 1 )  /\  ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  0 )  x.  ( B `  i )
)  +  ( 0  x.  ( ( B `
 i )  -  ( ( C `  i )  -  ( D `  i )
) ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( ( B `  i )  -  (
( C `  i
)  -  ( D `
 i ) ) ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )  ->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )
7042, 69mp3an2 1267 . . . . . 6  |-  ( ( ( k  e.  ( 1 ... N ) 
|->  ( ( B `  k )  -  (
( C `  k
)  -  ( D `
 k ) ) ) )  e.  ( EE `  N )  /\  ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  0 )  x.  ( B `  i )
)  +  ( 0  x.  ( ( B `
 i )  -  ( ( C `  i )  -  ( D `  i )
) ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( ( B `  i )  -  (
( C `  i
)  -  ( D `
 i ) ) ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )  ->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )
7114, 37, 41, 70syl12anc 1182 . . . . 5  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  ->  E. x  e.  ( EE `  N
) E. t  e.  ( 0 [,] 1
) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )
72713expb 1154 . . . 4  |-  ( ( B  e.  ( EE
`  N )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )
7372adantll 695 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  ->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( x `  i
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )
74 fveq1 5686 . . . . . . . . 9  |-  ( A  =  B  ->  ( A `  i )  =  ( B `  i ) )
7574oveq2d 6056 . . . . . . . 8  |-  ( A  =  B  ->  (
( 1  -  t
)  x.  ( A `
 i ) )  =  ( ( 1  -  t )  x.  ( B `  i
) ) )
7675oveq1d 6055 . . . . . . 7  |-  ( A  =  B  ->  (
( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  =  ( ( ( 1  -  t )  x.  ( B `  i ) )  +  ( t  x.  (
x `  i )
) ) )
7776eqeq2d 2415 . . . . . 6  |-  ( A  =  B  ->  (
( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( x `  i
) ) )  <->  ( B `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( x `  i ) ) ) ) )
7877ralbidv 2686 . . . . 5  |-  ( A  =  B  ->  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  (
x `  i )
) )  <->  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( x `  i ) ) ) ) )
7978anbi1d 686 . . . 4  |-  ( A  =  B  ->  (
( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) )  <->  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i ) )  +  ( t  x.  (
x `  i )
) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) ) )
80792rexbidv 2709 . . 3  |-  ( A  =  B  ->  ( E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( x `  i
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) )  <->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) ) )
8173, 80syl5ibr 213 . 2  |-  ( A  =  B  ->  (
( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  ->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( x `  i
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) ) )
8281imp 419 1  |-  ( ( A  =  B  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667    e. cmpt 4226   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    - cmin 9247   NNcn 9956   2c2 10005   [,]cicc 10875   ...cfz 10999   ^cexp 11337   sum_csu 12434   EEcee 25731
This theorem is referenced by:  axsegcon  25770
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-n0 10178  df-z 10239  df-uz 10445  df-icc 10879  df-fz 11000  df-seq 11279  df-sum 12435  df-ee 25734
  Copyright terms: Public domain W3C validator