MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axsegconlem1 Structured version   Unicode version

Theorem axsegconlem1 23168
Description: Lemma for axsegcon 23178. Handle the degenerate case. (Contributed by Scott Fenton, 7-Jun-2013.)
Assertion
Ref Expression
axsegconlem1  |-  ( ( A  =  B  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )
Distinct variable groups:    t, N, i, x    t, A, i, x    t, B, i, x    t, C, i, x    t, D, i, x

Proof of Theorem axsegconlem1
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 fveere 23152 . . . . . . . . . 10  |-  ( ( B  e.  ( EE
`  N )  /\  k  e.  ( 1 ... N ) )  ->  ( B `  k )  e.  RR )
213ad2antl1 1150 . . . . . . . . 9  |-  ( ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  k  e.  ( 1 ... N
) )  ->  ( B `  k )  e.  RR )
3 fveere 23152 . . . . . . . . . . 11  |-  ( ( C  e.  ( EE
`  N )  /\  k  e.  ( 1 ... N ) )  ->  ( C `  k )  e.  RR )
433ad2antl2 1151 . . . . . . . . . 10  |-  ( ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  k  e.  ( 1 ... N
) )  ->  ( C `  k )  e.  RR )
5 fveere 23152 . . . . . . . . . . 11  |-  ( ( D  e.  ( EE
`  N )  /\  k  e.  ( 1 ... N ) )  ->  ( D `  k )  e.  RR )
653ad2antl3 1152 . . . . . . . . . 10  |-  ( ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  k  e.  ( 1 ... N
) )  ->  ( D `  k )  e.  RR )
74, 6resubcld 9781 . . . . . . . . 9  |-  ( ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  k  e.  ( 1 ... N
) )  ->  (
( C `  k
)  -  ( D `
 k ) )  e.  RR )
82, 7resubcld 9781 . . . . . . . 8  |-  ( ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  k  e.  ( 1 ... N
) )  ->  (
( B `  k
)  -  ( ( C `  k )  -  ( D `  k ) ) )  e.  RR )
98ralrimiva 2804 . . . . . . 7  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  ->  A. k  e.  ( 1 ... N
) ( ( B `
 k )  -  ( ( C `  k )  -  ( D `  k )
) )  e.  RR )
10 eleenn 23147 . . . . . . . . 9  |-  ( B  e.  ( EE `  N )  ->  N  e.  NN )
11 mptelee 23146 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( k  e.  ( 1 ... N ) 
|->  ( ( B `  k )  -  (
( C `  k
)  -  ( D `
 k ) ) ) )  e.  ( EE `  N )  <->  A. k  e.  (
1 ... N ) ( ( B `  k
)  -  ( ( C `  k )  -  ( D `  k ) ) )  e.  RR ) )
1210, 11syl 16 . . . . . . . 8  |-  ( B  e.  ( EE `  N )  ->  (
( k  e.  ( 1 ... N ) 
|->  ( ( B `  k )  -  (
( C `  k
)  -  ( D `
 k ) ) ) )  e.  ( EE `  N )  <->  A. k  e.  (
1 ... N ) ( ( B `  k
)  -  ( ( C `  k )  -  ( D `  k ) ) )  e.  RR ) )
13123ad2ant1 1009 . . . . . . 7  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  ->  (
( k  e.  ( 1 ... N ) 
|->  ( ( B `  k )  -  (
( C `  k
)  -  ( D `
 k ) ) ) )  e.  ( EE `  N )  <->  A. k  e.  (
1 ... N ) ( ( B `  k
)  -  ( ( C `  k )  -  ( D `  k ) ) )  e.  RR ) )
149, 13mpbird 232 . . . . . 6  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  ->  (
k  e.  ( 1 ... N )  |->  ( ( B `  k
)  -  ( ( C `  k )  -  ( D `  k ) ) ) )  e.  ( EE
`  N ) )
15 fveecn 23153 . . . . . . . . 9  |-  ( ( B  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( B `  i )  e.  CC )
16153ad2antl1 1150 . . . . . . . 8  |-  ( ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  ( B `  i )  e.  CC )
17 fveecn 23153 . . . . . . . . 9  |-  ( ( C  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( C `  i )  e.  CC )
18173ad2antl2 1151 . . . . . . . 8  |-  ( ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  ( C `  i )  e.  CC )
19 fveecn 23153 . . . . . . . . 9  |-  ( ( D  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( D `  i )  e.  CC )
20193ad2antl3 1152 . . . . . . . 8  |-  ( ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  ( D `  i )  e.  CC )
21 1m0e1 10437 . . . . . . . . . . . 12  |-  ( 1  -  0 )  =  1
2221oveq1i 6106 . . . . . . . . . . 11  |-  ( ( 1  -  0 )  x.  ( B `  i ) )  =  ( 1  x.  ( B `  i )
)
23 mulid2 9389 . . . . . . . . . . . 12  |-  ( ( B `  i )  e.  CC  ->  (
1  x.  ( B `
 i ) )  =  ( B `  i ) )
24233ad2ant1 1009 . . . . . . . . . . 11  |-  ( ( ( B `  i
)  e.  CC  /\  ( C `  i )  e.  CC  /\  ( D `  i )  e.  CC )  ->  (
1  x.  ( B `
 i ) )  =  ( B `  i ) )
2522, 24syl5eq 2487 . . . . . . . . . 10  |-  ( ( ( B `  i
)  e.  CC  /\  ( C `  i )  e.  CC  /\  ( D `  i )  e.  CC )  ->  (
( 1  -  0 )  x.  ( B `
 i ) )  =  ( B `  i ) )
26 subcl 9614 . . . . . . . . . . . . 13  |-  ( ( ( C `  i
)  e.  CC  /\  ( D `  i )  e.  CC )  -> 
( ( C `  i )  -  ( D `  i )
)  e.  CC )
27 subcl 9614 . . . . . . . . . . . . 13  |-  ( ( ( B `  i
)  e.  CC  /\  ( ( C `  i )  -  ( D `  i )
)  e.  CC )  ->  ( ( B `
 i )  -  ( ( C `  i )  -  ( D `  i )
) )  e.  CC )
2826, 27sylan2 474 . . . . . . . . . . . 12  |-  ( ( ( B `  i
)  e.  CC  /\  ( ( C `  i )  e.  CC  /\  ( D `  i
)  e.  CC ) )  ->  ( ( B `  i )  -  ( ( C `
 i )  -  ( D `  i ) ) )  e.  CC )
29283impb 1183 . . . . . . . . . . 11  |-  ( ( ( B `  i
)  e.  CC  /\  ( C `  i )  e.  CC  /\  ( D `  i )  e.  CC )  ->  (
( B `  i
)  -  ( ( C `  i )  -  ( D `  i ) ) )  e.  CC )
3029mul02d 9572 . . . . . . . . . 10  |-  ( ( ( B `  i
)  e.  CC  /\  ( C `  i )  e.  CC  /\  ( D `  i )  e.  CC )  ->  (
0  x.  ( ( B `  i )  -  ( ( C `
 i )  -  ( D `  i ) ) ) )  =  0 )
3125, 30oveq12d 6114 . . . . . . . . 9  |-  ( ( ( B `  i
)  e.  CC  /\  ( C `  i )  e.  CC  /\  ( D `  i )  e.  CC )  ->  (
( ( 1  -  0 )  x.  ( B `  i )
)  +  ( 0  x.  ( ( B `
 i )  -  ( ( C `  i )  -  ( D `  i )
) ) ) )  =  ( ( B `
 i )  +  0 ) )
32 addid1 9554 . . . . . . . . . 10  |-  ( ( B `  i )  e.  CC  ->  (
( B `  i
)  +  0 )  =  ( B `  i ) )
33323ad2ant1 1009 . . . . . . . . 9  |-  ( ( ( B `  i
)  e.  CC  /\  ( C `  i )  e.  CC  /\  ( D `  i )  e.  CC )  ->  (
( B `  i
)  +  0 )  =  ( B `  i ) )
3431, 33eqtr2d 2476 . . . . . . . 8  |-  ( ( ( B `  i
)  e.  CC  /\  ( C `  i )  e.  CC  /\  ( D `  i )  e.  CC )  ->  ( B `  i )  =  ( ( ( 1  -  0 )  x.  ( B `  i ) )  +  ( 0  x.  (
( B `  i
)  -  ( ( C `  i )  -  ( D `  i ) ) ) ) ) )
3516, 18, 20, 34syl3anc 1218 . . . . . . 7  |-  ( ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  ( B `  i )  =  ( ( ( 1  -  0 )  x.  ( B `  i ) )  +  ( 0  x.  (
( B `  i
)  -  ( ( C `  i )  -  ( D `  i ) ) ) ) ) )
3635ralrimiva 2804 . . . . . 6  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  ->  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  0 )  x.  ( B `  i )
)  +  ( 0  x.  ( ( B `
 i )  -  ( ( C `  i )  -  ( D `  i )
) ) ) ) )
3718, 20subcld 9724 . . . . . . . . 9  |-  ( ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( C `  i
)  -  ( D `
 i ) )  e.  CC )
3816, 37nncand 9729 . . . . . . . 8  |-  ( ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( B `  i
)  -  ( ( B `  i )  -  ( ( C `
 i )  -  ( D `  i ) ) ) )  =  ( ( C `  i )  -  ( D `  i )
) )
3938oveq1d 6111 . . . . . . 7  |-  ( ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( B `  i )  -  (
( B `  i
)  -  ( ( C `  i )  -  ( D `  i ) ) ) ) ^ 2 )  =  ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) )
4039sumeq2dv 13185 . . . . . 6  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( B `  i )  -  ( ( B `
 i )  -  ( ( C `  i )  -  ( D `  i )
) ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) )
41 0elunit 11408 . . . . . . 7  |-  0  e.  ( 0 [,] 1
)
42 fveq1 5695 . . . . . . . . . . . . . 14  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( B `
 k )  -  ( ( C `  k )  -  ( D `  k )
) ) )  -> 
( x `  i
)  =  ( ( k  e.  ( 1 ... N )  |->  ( ( B `  k
)  -  ( ( C `  k )  -  ( D `  k ) ) ) ) `  i ) )
43 fveq2 5696 . . . . . . . . . . . . . . . 16  |-  ( k  =  i  ->  ( B `  k )  =  ( B `  i ) )
44 fveq2 5696 . . . . . . . . . . . . . . . . 17  |-  ( k  =  i  ->  ( C `  k )  =  ( C `  i ) )
45 fveq2 5696 . . . . . . . . . . . . . . . . 17  |-  ( k  =  i  ->  ( D `  k )  =  ( D `  i ) )
4644, 45oveq12d 6114 . . . . . . . . . . . . . . . 16  |-  ( k  =  i  ->  (
( C `  k
)  -  ( D `
 k ) )  =  ( ( C `
 i )  -  ( D `  i ) ) )
4743, 46oveq12d 6114 . . . . . . . . . . . . . . 15  |-  ( k  =  i  ->  (
( B `  k
)  -  ( ( C `  k )  -  ( D `  k ) ) )  =  ( ( B `
 i )  -  ( ( C `  i )  -  ( D `  i )
) ) )
48 eqid 2443 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( 1 ... N )  |->  ( ( B `  k )  -  ( ( C `
 k )  -  ( D `  k ) ) ) )  =  ( k  e.  ( 1 ... N ) 
|->  ( ( B `  k )  -  (
( C `  k
)  -  ( D `
 k ) ) ) )
49 ovex 6121 . . . . . . . . . . . . . . 15  |-  ( ( B `  i )  -  ( ( C `
 i )  -  ( D `  i ) ) )  e.  _V
5047, 48, 49fvmpt 5779 . . . . . . . . . . . . . 14  |-  ( i  e.  ( 1 ... N )  ->  (
( k  e.  ( 1 ... N ) 
|->  ( ( B `  k )  -  (
( C `  k
)  -  ( D `
 k ) ) ) ) `  i
)  =  ( ( B `  i )  -  ( ( C `
 i )  -  ( D `  i ) ) ) )
5142, 50sylan9eq 2495 . . . . . . . . . . . . 13  |-  ( ( x  =  ( k  e.  ( 1 ... N )  |->  ( ( B `  k )  -  ( ( C `
 k )  -  ( D `  k ) ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( x `  i )  =  ( ( B `  i
)  -  ( ( C `  i )  -  ( D `  i ) ) ) )
5251oveq2d 6112 . . . . . . . . . . . 12  |-  ( ( x  =  ( k  e.  ( 1 ... N )  |->  ( ( B `  k )  -  ( ( C `
 k )  -  ( D `  k ) ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( t  x.  ( x `  i
) )  =  ( t  x.  ( ( B `  i )  -  ( ( C `
 i )  -  ( D `  i ) ) ) ) )
5352oveq2d 6112 . . . . . . . . . . 11  |-  ( ( x  =  ( k  e.  ( 1 ... N )  |->  ( ( B `  k )  -  ( ( C `
 k )  -  ( D `  k ) ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( ( ( 1  -  t )  x.  ( B `  i ) )  +  ( t  x.  (
x `  i )
) )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( ( B `
 i )  -  ( ( C `  i )  -  ( D `  i )
) ) ) ) )
5453eqeq2d 2454 . . . . . . . . . 10  |-  ( ( x  =  ( k  e.  ( 1 ... N )  |->  ( ( B `  k )  -  ( ( C `
 k )  -  ( D `  k ) ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( ( B `
 i )  =  ( ( ( 1  -  t )  x.  ( B `  i
) )  +  ( t  x.  ( x `
 i ) ) )  <->  ( B `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( ( B `
 i )  -  ( ( C `  i )  -  ( D `  i )
) ) ) ) ) )
5554ralbidva 2736 . . . . . . . . 9  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( B `
 k )  -  ( ( C `  k )  -  ( D `  k )
) ) )  -> 
( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( x `  i ) ) )  <->  A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i ) )  +  ( t  x.  (
( B `  i
)  -  ( ( C `  i )  -  ( D `  i ) ) ) ) ) ) )
5651oveq2d 6112 . . . . . . . . . . . 12  |-  ( ( x  =  ( k  e.  ( 1 ... N )  |->  ( ( B `  k )  -  ( ( C `
 k )  -  ( D `  k ) ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( ( B `
 i )  -  ( x `  i
) )  =  ( ( B `  i
)  -  ( ( B `  i )  -  ( ( C `
 i )  -  ( D `  i ) ) ) ) )
5756oveq1d 6111 . . . . . . . . . . 11  |-  ( ( x  =  ( k  e.  ( 1 ... N )  |->  ( ( B `  k )  -  ( ( C `
 k )  -  ( D `  k ) ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( ( ( B `  i )  -  ( x `  i ) ) ^
2 )  =  ( ( ( B `  i )  -  (
( B `  i
)  -  ( ( C `  i )  -  ( D `  i ) ) ) ) ^ 2 ) )
5857sumeq2dv 13185 . . . . . . . . . 10  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( B `
 k )  -  ( ( C `  k )  -  ( D `  k )
) ) )  ->  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( ( B `  i )  -  (
( C `  i
)  -  ( D `
 i ) ) ) ) ^ 2 ) )
5958eqeq1d 2451 . . . . . . . . 9  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( B `
 k )  -  ( ( C `  k )  -  ( D `  k )
) ) )  -> 
( sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 )  <->  sum_ i  e.  ( 1 ... N
) ( ( ( B `  i )  -  ( ( B `
 i )  -  ( ( C `  i )  -  ( D `  i )
) ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) )
6055, 59anbi12d 710 . . . . . . . 8  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( B `
 k )  -  ( ( C `  k )  -  ( D `  k )
) ) )  -> 
( ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) )  <->  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i ) )  +  ( t  x.  (
( B `  i
)  -  ( ( C `  i )  -  ( D `  i ) ) ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
( B `  i
)  -  ( ( C `  i )  -  ( D `  i ) ) ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) ) )
61 oveq2 6104 . . . . . . . . . . . . 13  |-  ( t  =  0  ->  (
1  -  t )  =  ( 1  -  0 ) )
6261oveq1d 6111 . . . . . . . . . . . 12  |-  ( t  =  0  ->  (
( 1  -  t
)  x.  ( B `
 i ) )  =  ( ( 1  -  0 )  x.  ( B `  i
) ) )
63 oveq1 6103 . . . . . . . . . . . 12  |-  ( t  =  0  ->  (
t  x.  ( ( B `  i )  -  ( ( C `
 i )  -  ( D `  i ) ) ) )  =  ( 0  x.  (
( B `  i
)  -  ( ( C `  i )  -  ( D `  i ) ) ) ) )
6462, 63oveq12d 6114 . . . . . . . . . . 11  |-  ( t  =  0  ->  (
( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( ( B `
 i )  -  ( ( C `  i )  -  ( D `  i )
) ) ) )  =  ( ( ( 1  -  0 )  x.  ( B `  i ) )  +  ( 0  x.  (
( B `  i
)  -  ( ( C `  i )  -  ( D `  i ) ) ) ) ) )
6564eqeq2d 2454 . . . . . . . . . 10  |-  ( t  =  0  ->  (
( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( ( B `  i )  -  (
( C `  i
)  -  ( D `
 i ) ) ) ) )  <->  ( B `  i )  =  ( ( ( 1  -  0 )  x.  ( B `  i )
)  +  ( 0  x.  ( ( B `
 i )  -  ( ( C `  i )  -  ( D `  i )
) ) ) ) ) )
6665ralbidv 2740 . . . . . . . . 9  |-  ( t  =  0  ->  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i ) )  +  ( t  x.  (
( B `  i
)  -  ( ( C `  i )  -  ( D `  i ) ) ) ) )  <->  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  0 )  x.  ( B `  i )
)  +  ( 0  x.  ( ( B `
 i )  -  ( ( C `  i )  -  ( D `  i )
) ) ) ) ) )
6766anbi1d 704 . . . . . . . 8  |-  ( t  =  0  ->  (
( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( ( B `
 i )  -  ( ( C `  i )  -  ( D `  i )
) ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( ( B `  i )  -  (
( C `  i
)  -  ( D `
 i ) ) ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) )  <->  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  0 )  x.  ( B `  i ) )  +  ( 0  x.  (
( B `  i
)  -  ( ( C `  i )  -  ( D `  i ) ) ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
( B `  i
)  -  ( ( C `  i )  -  ( D `  i ) ) ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) ) )
6860, 67rspc2ev 3086 . . . . . . 7  |-  ( ( ( k  e.  ( 1 ... N ) 
|->  ( ( B `  k )  -  (
( C `  k
)  -  ( D `
 k ) ) ) )  e.  ( EE `  N )  /\  0  e.  ( 0 [,] 1 )  /\  ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  0 )  x.  ( B `  i )
)  +  ( 0  x.  ( ( B `
 i )  -  ( ( C `  i )  -  ( D `  i )
) ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( ( B `  i )  -  (
( C `  i
)  -  ( D `
 i ) ) ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )  ->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )
6941, 68mp3an2 1302 . . . . . 6  |-  ( ( ( k  e.  ( 1 ... N ) 
|->  ( ( B `  k )  -  (
( C `  k
)  -  ( D `
 k ) ) ) )  e.  ( EE `  N )  /\  ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  0 )  x.  ( B `  i )
)  +  ( 0  x.  ( ( B `
 i )  -  ( ( C `  i )  -  ( D `  i )
) ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( ( B `  i )  -  (
( C `  i
)  -  ( D `
 i ) ) ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )  ->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )
7014, 36, 40, 69syl12anc 1216 . . . . 5  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  ->  E. x  e.  ( EE `  N
) E. t  e.  ( 0 [,] 1
) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )
71703expb 1188 . . . 4  |-  ( ( B  e.  ( EE
`  N )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )
7271adantll 713 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  ->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( x `  i
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )
73 fveq1 5695 . . . . . . . . 9  |-  ( A  =  B  ->  ( A `  i )  =  ( B `  i ) )
7473oveq2d 6112 . . . . . . . 8  |-  ( A  =  B  ->  (
( 1  -  t
)  x.  ( A `
 i ) )  =  ( ( 1  -  t )  x.  ( B `  i
) ) )
7574oveq1d 6111 . . . . . . 7  |-  ( A  =  B  ->  (
( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  =  ( ( ( 1  -  t )  x.  ( B `  i ) )  +  ( t  x.  (
x `  i )
) ) )
7675eqeq2d 2454 . . . . . 6  |-  ( A  =  B  ->  (
( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( x `  i
) ) )  <->  ( B `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( x `  i ) ) ) ) )
7776ralbidv 2740 . . . . 5  |-  ( A  =  B  ->  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  (
x `  i )
) )  <->  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( x `  i ) ) ) ) )
7877anbi1d 704 . . . 4  |-  ( A  =  B  ->  (
( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) )  <->  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i ) )  +  ( t  x.  (
x `  i )
) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) ) )
79782rexbidv 2763 . . 3  |-  ( A  =  B  ->  ( E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( x `  i
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) )  <->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) ) )
8072, 79syl5ibr 221 . 2  |-  ( A  =  B  ->  (
( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  ->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( x `  i
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) ) )
8180imp 429 1  |-  ( ( A  =  B  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2720   E.wrex 2721    e. cmpt 4355   ` cfv 5423  (class class class)co 6096   CCcc 9285   RRcr 9286   0cc0 9287   1c1 9288    + caddc 9290    x. cmul 9292    - cmin 9600   NNcn 10327   2c2 10376   [,]cicc 11308   ...cfz 11442   ^cexp 11870   sum_csu 13168   EEcee 23139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-1st 6582  df-2nd 6583  df-recs 6837  df-rdg 6871  df-er 7106  df-map 7221  df-en 7316  df-dom 7317  df-sdom 7318  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-nn 10328  df-n0 10585  df-z 10652  df-uz 10867  df-icc 11312  df-fz 11443  df-seq 11812  df-sum 13169  df-ee 23142
This theorem is referenced by:  axsegcon  23178
  Copyright terms: Public domain W3C validator