MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axresscn Structured version   Unicode version

Theorem axresscn 9572
Description: The real numbers are a subset of the complex numbers. Axiom 1 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-resscn 9596. (Contributed by NM, 1-Mar-1995.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (New usage is discouraged.)
Assertion
Ref Expression
axresscn  |-  RR  C_  CC

Proof of Theorem axresscn
StepHypRef Expression
1 0r 9504 . . 3  |-  0R  e.  R.
2 snssi 4141 . . 3  |-  ( 0R  e.  R.  ->  { 0R }  C_  R. )
3 xpss2 4959 . . 3  |-  ( { 0R }  C_  R.  ->  ( R.  X.  { 0R } )  C_  ( R.  X.  R. ) )
41, 2, 3mp2b 10 . 2  |-  ( R. 
X.  { 0R }
)  C_  ( R.  X.  R. )
5 df-r 9549 . 2  |-  RR  =  ( R.  X.  { 0R } )
6 df-c 9545 . 2  |-  CC  =  ( R.  X.  R. )
74, 5, 63sstr4i 3503 1  |-  RR  C_  CC
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1868    C_ wss 3436   {csn 3996    X. cxp 4847   R.cnr 9290   0Rc0r 9291   CCcc 9537   RRcr 9538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593  ax-inf2 8148
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4760  df-id 4764  df-po 4770  df-so 4771  df-fr 4808  df-we 4810  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-pred 5395  df-ord 5441  df-on 5442  df-lim 5443  df-suc 5444  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-om 6703  df-1st 6803  df-2nd 6804  df-wrecs 7032  df-recs 7094  df-rdg 7132  df-1o 7186  df-oadd 7190  df-omul 7191  df-er 7367  df-ec 7369  df-qs 7373  df-ni 9297  df-pli 9298  df-mi 9299  df-lti 9300  df-plpq 9333  df-mpq 9334  df-ltpq 9335  df-enq 9336  df-nq 9337  df-erq 9338  df-plq 9339  df-mq 9340  df-1nq 9341  df-rq 9342  df-ltnq 9343  df-np 9406  df-1p 9407  df-enr 9480  df-nr 9481  df-0r 9485  df-c 9545  df-r 9549
This theorem is referenced by:  ax1cn  9573  bj-rrhatsscchat  31629
  Copyright terms: Public domain W3C validator