MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axregndlem1 Structured version   Visualization version   Unicode version

Theorem axregndlem1 9027
Description: Lemma for the Axiom of Regularity with no distinct variable conditions. (Contributed by NM, 3-Jan-2002.)
Assertion
Ref Expression
axregndlem1  |-  ( A. x  x  =  z  ->  ( x  e.  y  ->  E. x ( x  e.  y  /\  A. z ( z  e.  x  ->  -.  z  e.  y ) ) ) )

Proof of Theorem axregndlem1
StepHypRef Expression
1 19.8a 1935 . 2  |-  ( x  e.  y  ->  E. x  x  e.  y )
2 nfae 2150 . . 3  |-  F/ x A. x  x  =  z
3 nfae 2150 . . . . . 6  |-  F/ z A. x  x  =  z
4 elirrv 8112 . . . . . . . . 9  |-  -.  x  e.  x
5 elequ1 1894 . . . . . . . . 9  |-  ( x  =  z  ->  (
x  e.  x  <->  z  e.  x ) )
64, 5mtbii 304 . . . . . . . 8  |-  ( x  =  z  ->  -.  z  e.  x )
76sps 1943 . . . . . . 7  |-  ( A. x  x  =  z  ->  -.  z  e.  x
)
87pm2.21d 110 . . . . . 6  |-  ( A. x  x  =  z  ->  ( z  e.  x  ->  -.  z  e.  y ) )
93, 8alrimi 1955 . . . . 5  |-  ( A. x  x  =  z  ->  A. z ( z  e.  x  ->  -.  z  e.  y )
)
109anim2i 573 . . . 4  |-  ( ( x  e.  y  /\  A. x  x  =  z )  ->  ( x  e.  y  /\  A. z
( z  e.  x  ->  -.  z  e.  y ) ) )
1110expcom 437 . . 3  |-  ( A. x  x  =  z  ->  ( x  e.  y  ->  ( x  e.  y  /\  A. z
( z  e.  x  ->  -.  z  e.  y ) ) ) )
122, 11eximd 1960 . 2  |-  ( A. x  x  =  z  ->  ( E. x  x  e.  y  ->  E. x
( x  e.  y  /\  A. z ( z  e.  x  ->  -.  z  e.  y
) ) ) )
131, 12syl5 33 1  |-  ( A. x  x  =  z  ->  ( x  e.  y  ->  E. x ( x  e.  y  /\  A. z ( z  e.  x  ->  -.  z  e.  y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 371   A.wal 1442   E.wex 1663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pr 4639  ax-reg 8107
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-v 3047  df-dif 3407  df-un 3409  df-nul 3732  df-sn 3969  df-pr 3971
This theorem is referenced by:  axregndlem2  9028  axregnd  9029
  Copyright terms: Public domain W3C validator