MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpre-lttrn Structured version   Unicode version

Theorem axpre-lttrn 9338
Description: Ordering on reals is transitive. Axiom 19 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttrn 9452. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttrn 9362. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-lttrn  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <RR  B  /\  B  <RR  C )  ->  A  <RR  C ) )

Proof of Theorem axpre-lttrn
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 9303 . 2  |-  ( A  e.  RR  <->  E. x  e.  R.  <. x ,  0R >.  =  A )
2 elreal 9303 . 2  |-  ( B  e.  RR  <->  E. y  e.  R.  <. y ,  0R >.  =  B )
3 elreal 9303 . 2  |-  ( C  e.  RR  <->  E. z  e.  R.  <. z ,  0R >.  =  C )
4 breq1 4300 . . . 4  |-  ( <.
x ,  0R >.  =  A  ->  ( <. x ,  0R >.  <RR  <. y ,  0R >.  <->  A  <RR  <. y ,  0R >. ) )
54anbi1d 704 . . 3  |-  ( <.
x ,  0R >.  =  A  ->  ( ( <. x ,  0R >.  <RR  <. y ,  0R >.  /\ 
<. y ,  0R >.  <RR  <. z ,  0R >. )  <-> 
( A  <RR  <. y ,  0R >.  /\  <. y ,  0R >.  <RR  <. z ,  0R >. ) ) )
6 breq1 4300 . . 3  |-  ( <.
x ,  0R >.  =  A  ->  ( <. x ,  0R >.  <RR  <. z ,  0R >.  <->  A  <RR  <. z ,  0R >. ) )
75, 6imbi12d 320 . 2  |-  ( <.
x ,  0R >.  =  A  ->  ( (
( <. x ,  0R >. 
<RR  <. y ,  0R >.  /\  <. y ,  0R >. 
<RR  <. z ,  0R >. )  ->  <. x ,  0R >.  <RR  <. z ,  0R >. )  <->  ( ( A  <RR  <. y ,  0R >.  /\  <. y ,  0R >. 
<RR  <. z ,  0R >. )  ->  A  <RR  <.
z ,  0R >. ) ) )
8 breq2 4301 . . . 4  |-  ( <.
y ,  0R >.  =  B  ->  ( A  <RR 
<. y ,  0R >.  <->  A  <RR  B ) )
9 breq1 4300 . . . 4  |-  ( <.
y ,  0R >.  =  B  ->  ( <. y ,  0R >.  <RR  <. z ,  0R >.  <->  B  <RR  <. z ,  0R >. ) )
108, 9anbi12d 710 . . 3  |-  ( <.
y ,  0R >.  =  B  ->  ( ( A  <RR  <. y ,  0R >.  /\  <. y ,  0R >. 
<RR  <. z ,  0R >. )  <->  ( A  <RR  B  /\  B  <RR  <. z ,  0R >. ) ) )
1110imbi1d 317 . 2  |-  ( <.
y ,  0R >.  =  B  ->  ( (
( A  <RR  <. y ,  0R >.  /\  <. y ,  0R >.  <RR  <. z ,  0R >. )  ->  A  <RR 
<. z ,  0R >. )  <-> 
( ( A  <RR  B  /\  B  <RR  <. z ,  0R >. )  ->  A  <RR 
<. z ,  0R >. ) ) )
12 breq2 4301 . . . 4  |-  ( <.
z ,  0R >.  =  C  ->  ( B  <RR 
<. z ,  0R >.  <->  B  <RR  C ) )
1312anbi2d 703 . . 3  |-  ( <.
z ,  0R >.  =  C  ->  ( ( A  <RR  B  /\  B  <RR 
<. z ,  0R >. )  <-> 
( A  <RR  B  /\  B  <RR  C ) ) )
14 breq2 4301 . . 3  |-  ( <.
z ,  0R >.  =  C  ->  ( A  <RR 
<. z ,  0R >.  <->  A  <RR  C ) )
1513, 14imbi12d 320 . 2  |-  ( <.
z ,  0R >.  =  C  ->  ( (
( A  <RR  B  /\  B  <RR  <. z ,  0R >. )  ->  A  <RR  <.
z ,  0R >. )  <-> 
( ( A  <RR  B  /\  B  <RR  C )  ->  A  <RR  C ) ) )
16 ltresr 9312 . . . . 5  |-  ( <.
x ,  0R >.  <RR  <. y ,  0R >.  <->  x  <R  y )
17 ltresr 9312 . . . . 5  |-  ( <.
y ,  0R >.  <RR  <. z ,  0R >.  <->  y  <R  z )
18 ltsosr 9266 . . . . . 6  |-  <R  Or  R.
19 ltrelsr 9243 . . . . . 6  |-  <R  C_  ( R.  X.  R. )
2018, 19sotri 5230 . . . . 5  |-  ( ( x  <R  y  /\  y  <R  z )  ->  x  <R  z )
2116, 17, 20syl2anb 479 . . . 4  |-  ( (
<. x ,  0R >.  <RR  <. y ,  0R >.  /\ 
<. y ,  0R >.  <RR  <. z ,  0R >. )  ->  x  <R  z
)
22 ltresr 9312 . . . 4  |-  ( <.
x ,  0R >.  <RR  <. z ,  0R >.  <->  x  <R  z )
2321, 22sylibr 212 . . 3  |-  ( (
<. x ,  0R >.  <RR  <. y ,  0R >.  /\ 
<. y ,  0R >.  <RR  <. z ,  0R >. )  ->  <. x ,  0R >. 
<RR  <. z ,  0R >. )
2423a1i 11 . 2  |-  ( ( x  e.  R.  /\  y  e.  R.  /\  z  e.  R. )  ->  (
( <. x ,  0R >. 
<RR  <. y ,  0R >.  /\  <. y ,  0R >. 
<RR  <. z ,  0R >. )  ->  <. x ,  0R >.  <RR  <. z ,  0R >. ) )
251, 2, 3, 7, 11, 15, 243gencl 3009 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <RR  B  /\  B  <RR  C )  ->  A  <RR  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   <.cop 3888   class class class wbr 4297   R.cnr 9039   0Rc0r 9040    <R cltr 9045   RRcr 9286    <RR cltrr 9291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-inf2 7852
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-1st 6582  df-2nd 6583  df-recs 6837  df-rdg 6871  df-1o 6925  df-oadd 6929  df-omul 6930  df-er 7106  df-ec 7108  df-qs 7112  df-ni 9046  df-pli 9047  df-mi 9048  df-lti 9049  df-plpq 9082  df-mpq 9083  df-ltpq 9084  df-enq 9085  df-nq 9086  df-erq 9087  df-plq 9088  df-mq 9089  df-1nq 9090  df-rq 9091  df-ltnq 9092  df-np 9155  df-1p 9156  df-plp 9157  df-ltp 9159  df-enr 9231  df-nr 9232  df-ltr 9235  df-0r 9236  df-r 9297  df-lt 9300
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator