MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpre-lttrn Structured version   Unicode version

Theorem axpre-lttrn 9555
Description: Ordering on reals is transitive. Axiom 19 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttrn 9669. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttrn 9579. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-lttrn  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <RR  B  /\  B  <RR  C )  ->  A  <RR  C ) )

Proof of Theorem axpre-lttrn
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 9520 . 2  |-  ( A  e.  RR  <->  E. x  e.  R.  <. x ,  0R >.  =  A )
2 elreal 9520 . 2  |-  ( B  e.  RR  <->  E. y  e.  R.  <. y ,  0R >.  =  B )
3 elreal 9520 . 2  |-  ( C  e.  RR  <->  E. z  e.  R.  <. z ,  0R >.  =  C )
4 breq1 4456 . . . 4  |-  ( <.
x ,  0R >.  =  A  ->  ( <. x ,  0R >.  <RR  <. y ,  0R >.  <->  A  <RR  <. y ,  0R >. ) )
54anbi1d 704 . . 3  |-  ( <.
x ,  0R >.  =  A  ->  ( ( <. x ,  0R >.  <RR  <. y ,  0R >.  /\ 
<. y ,  0R >.  <RR  <. z ,  0R >. )  <-> 
( A  <RR  <. y ,  0R >.  /\  <. y ,  0R >.  <RR  <. z ,  0R >. ) ) )
6 breq1 4456 . . 3  |-  ( <.
x ,  0R >.  =  A  ->  ( <. x ,  0R >.  <RR  <. z ,  0R >.  <->  A  <RR  <. z ,  0R >. ) )
75, 6imbi12d 320 . 2  |-  ( <.
x ,  0R >.  =  A  ->  ( (
( <. x ,  0R >. 
<RR  <. y ,  0R >.  /\  <. y ,  0R >. 
<RR  <. z ,  0R >. )  ->  <. x ,  0R >.  <RR  <. z ,  0R >. )  <->  ( ( A  <RR  <. y ,  0R >.  /\  <. y ,  0R >. 
<RR  <. z ,  0R >. )  ->  A  <RR  <.
z ,  0R >. ) ) )
8 breq2 4457 . . . 4  |-  ( <.
y ,  0R >.  =  B  ->  ( A  <RR 
<. y ,  0R >.  <->  A  <RR  B ) )
9 breq1 4456 . . . 4  |-  ( <.
y ,  0R >.  =  B  ->  ( <. y ,  0R >.  <RR  <. z ,  0R >.  <->  B  <RR  <. z ,  0R >. ) )
108, 9anbi12d 710 . . 3  |-  ( <.
y ,  0R >.  =  B  ->  ( ( A  <RR  <. y ,  0R >.  /\  <. y ,  0R >. 
<RR  <. z ,  0R >. )  <->  ( A  <RR  B  /\  B  <RR  <. z ,  0R >. ) ) )
1110imbi1d 317 . 2  |-  ( <.
y ,  0R >.  =  B  ->  ( (
( A  <RR  <. y ,  0R >.  /\  <. y ,  0R >.  <RR  <. z ,  0R >. )  ->  A  <RR 
<. z ,  0R >. )  <-> 
( ( A  <RR  B  /\  B  <RR  <. z ,  0R >. )  ->  A  <RR 
<. z ,  0R >. ) ) )
12 breq2 4457 . . . 4  |-  ( <.
z ,  0R >.  =  C  ->  ( B  <RR 
<. z ,  0R >.  <->  B  <RR  C ) )
1312anbi2d 703 . . 3  |-  ( <.
z ,  0R >.  =  C  ->  ( ( A  <RR  B  /\  B  <RR 
<. z ,  0R >. )  <-> 
( A  <RR  B  /\  B  <RR  C ) ) )
14 breq2 4457 . . 3  |-  ( <.
z ,  0R >.  =  C  ->  ( A  <RR 
<. z ,  0R >.  <->  A  <RR  C ) )
1513, 14imbi12d 320 . 2  |-  ( <.
z ,  0R >.  =  C  ->  ( (
( A  <RR  B  /\  B  <RR  <. z ,  0R >. )  ->  A  <RR  <.
z ,  0R >. )  <-> 
( ( A  <RR  B  /\  B  <RR  C )  ->  A  <RR  C ) ) )
16 ltresr 9529 . . . . 5  |-  ( <.
x ,  0R >.  <RR  <. y ,  0R >.  <->  x  <R  y )
17 ltresr 9529 . . . . 5  |-  ( <.
y ,  0R >.  <RR  <. z ,  0R >.  <->  y  <R  z )
18 ltsosr 9483 . . . . . 6  |-  <R  Or  R.
19 ltrelsr 9457 . . . . . 6  |-  <R  C_  ( R.  X.  R. )
2018, 19sotri 5400 . . . . 5  |-  ( ( x  <R  y  /\  y  <R  z )  ->  x  <R  z )
2116, 17, 20syl2anb 479 . . . 4  |-  ( (
<. x ,  0R >.  <RR  <. y ,  0R >.  /\ 
<. y ,  0R >.  <RR  <. z ,  0R >. )  ->  x  <R  z
)
22 ltresr 9529 . . . 4  |-  ( <.
x ,  0R >.  <RR  <. z ,  0R >.  <->  x  <R  z )
2321, 22sylibr 212 . . 3  |-  ( (
<. x ,  0R >.  <RR  <. y ,  0R >.  /\ 
<. y ,  0R >.  <RR  <. z ,  0R >. )  ->  <. x ,  0R >. 
<RR  <. z ,  0R >. )
2423a1i 11 . 2  |-  ( ( x  e.  R.  /\  y  e.  R.  /\  z  e.  R. )  ->  (
( <. x ,  0R >. 
<RR  <. y ,  0R >.  /\  <. y ,  0R >. 
<RR  <. z ,  0R >. )  ->  <. x ,  0R >.  <RR  <. z ,  0R >. ) )
251, 2, 3, 7, 11, 15, 243gencl 3150 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <RR  B  /\  B  <RR  C )  ->  A  <RR  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   <.cop 4039   class class class wbr 4453   R.cnr 9255   0Rc0r 9256    <R cltr 9261   RRcr 9503    <RR cltrr 9508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-omul 7147  df-er 7323  df-ec 7325  df-qs 7329  df-ni 9262  df-pli 9263  df-mi 9264  df-lti 9265  df-plpq 9298  df-mpq 9299  df-ltpq 9300  df-enq 9301  df-nq 9302  df-erq 9303  df-plq 9304  df-mq 9305  df-1nq 9306  df-rq 9307  df-ltnq 9308  df-np 9371  df-1p 9372  df-plp 9373  df-ltp 9375  df-enr 9445  df-nr 9446  df-ltr 9449  df-0r 9450  df-r 9514  df-lt 9517
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator