MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpowndlem3 Structured version   Unicode version

Theorem axpowndlem3 8975
Description: Lemma for the Axiom of Power Sets with no distinct variable conditions. (Contributed by NM, 4-Jan-2002.) (Revised by Mario Carneiro, 10-Dec-2016.) (Proof shortened by Wolf Lammen, 10-Jun-2019.)
Assertion
Ref Expression
axpowndlem3  |-  ( -.  x  =  y  ->  E. x A. y ( A. x ( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) )
Distinct variable group:    y, z

Proof of Theorem axpowndlem3
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 sp 1914 . . 3  |-  ( A. x  x  =  y  ->  x  =  y )
21con3i 140 . 2  |-  ( -.  x  =  y  ->  -.  A. x  x  =  y )
3 p0ex 4554 . . . . . . . 8  |-  { (/) }  e.  _V
4 eleq2 2495 . . . . . . . . . 10  |-  ( x  =  { (/) }  ->  ( w  e.  x  <->  w  e.  {
(/) } ) )
54imbi2d 317 . . . . . . . . 9  |-  ( x  =  { (/) }  ->  ( ( w  =  (/)  ->  w  e.  x )  <-> 
( w  =  (/)  ->  w  e.  { (/) } ) ) )
65albidv 1761 . . . . . . . 8  |-  ( x  =  { (/) }  ->  ( A. w ( w  =  (/)  ->  w  e.  x )  <->  A. w
( w  =  (/)  ->  w  e.  { (/) } ) ) )
73, 6spcev 3116 . . . . . . 7  |-  ( A. w ( w  =  (/)  ->  w  e.  { (/)
} )  ->  E. x A. w ( w  =  (/)  ->  w  e.  x
) )
8 0ex 4499 . . . . . . . . 9  |-  (/)  e.  _V
98snid 3969 . . . . . . . 8  |-  (/)  e.  { (/)
}
10 eleq1 2494 . . . . . . . 8  |-  ( w  =  (/)  ->  ( w  e.  { (/) }  <->  (/)  e.  { (/)
} ) )
119, 10mpbiri 236 . . . . . . 7  |-  ( w  =  (/)  ->  w  e. 
{ (/) } )
127, 11mpg 1665 . . . . . 6  |-  E. x A. w ( w  =  (/)  ->  w  e.  x
)
13 neq0 3715 . . . . . . . . . 10  |-  ( -.  w  =  (/)  <->  E. x  x  e.  w )
1413con1bii 332 . . . . . . . . 9  |-  ( -. 
E. x  x  e.  w  <->  w  =  (/) )
1514imbi1i 326 . . . . . . . 8  |-  ( ( -.  E. x  x  e.  w  ->  w  e.  x )  <->  ( w  =  (/)  ->  w  e.  x ) )
1615albii 1685 . . . . . . 7  |-  ( A. w ( -.  E. x  x  e.  w  ->  w  e.  x )  <->  A. w ( w  =  (/)  ->  w  e.  x
) )
1716exbii 1712 . . . . . 6  |-  ( E. x A. w ( -.  E. x  x  e.  w  ->  w  e.  x )  <->  E. x A. w ( w  =  (/)  ->  w  e.  x
) )
1812, 17mpbir 212 . . . . 5  |-  E. x A. w ( -.  E. x  x  e.  w  ->  w  e.  x )
19 nfnae 2124 . . . . . 6  |-  F/ x  -.  A. x  x  =  y
20 nfnae 2124 . . . . . . 7  |-  F/ y  -.  A. x  x  =  y
21 nfcvf2 2593 . . . . . . . . . . 11  |-  ( -. 
A. x  x  =  y  ->  F/_ y x )
22 nfcvd 2570 . . . . . . . . . . 11  |-  ( -. 
A. x  x  =  y  ->  F/_ y w )
2321, 22nfeld 2577 . . . . . . . . . 10  |-  ( -. 
A. x  x  =  y  ->  F/ y  x  e.  w )
2419, 23nfexd 2012 . . . . . . . . 9  |-  ( -. 
A. x  x  =  y  ->  F/ y E. x  x  e.  w )
2524nfnd 1961 . . . . . . . 8  |-  ( -. 
A. x  x  =  y  ->  F/ y  -.  E. x  x  e.  w )
2622, 21nfeld 2577 . . . . . . . 8  |-  ( -. 
A. x  x  =  y  ->  F/ y  w  e.  x )
2725, 26nfimd 1977 . . . . . . 7  |-  ( -. 
A. x  x  =  y  ->  F/ y
( -.  E. x  x  e.  w  ->  w  e.  x ) )
28 nfeqf2 2107 . . . . . . . . . . . 12  |-  ( -. 
A. x  x  =  y  ->  F/ x  w  =  y )
2919, 28nfan1 1987 . . . . . . . . . . 11  |-  F/ x
( -.  A. x  x  =  y  /\  w  =  y )
30 elequ2 1877 . . . . . . . . . . . 12  |-  ( w  =  y  ->  (
x  e.  w  <->  x  e.  y ) )
3130adantl 467 . . . . . . . . . . 11  |-  ( ( -.  A. x  x  =  y  /\  w  =  y )  -> 
( x  e.  w  <->  x  e.  y ) )
3229, 31exbid 1941 . . . . . . . . . 10  |-  ( ( -.  A. x  x  =  y  /\  w  =  y )  -> 
( E. x  x  e.  w  <->  E. x  x  e.  y )
)
3332notbid 295 . . . . . . . . 9  |-  ( ( -.  A. x  x  =  y  /\  w  =  y )  -> 
( -.  E. x  x  e.  w  <->  -.  E. x  x  e.  y )
)
34 elequ1 1875 . . . . . . . . . 10  |-  ( w  =  y  ->  (
w  e.  x  <->  y  e.  x ) )
3534adantl 467 . . . . . . . . 9  |-  ( ( -.  A. x  x  =  y  /\  w  =  y )  -> 
( w  e.  x  <->  y  e.  x ) )
3633, 35imbi12d 321 . . . . . . . 8  |-  ( ( -.  A. x  x  =  y  /\  w  =  y )  -> 
( ( -.  E. x  x  e.  w  ->  w  e.  x )  <-> 
( -.  E. x  x  e.  y  ->  y  e.  x ) ) )
3736ex 435 . . . . . . 7  |-  ( -. 
A. x  x  =  y  ->  ( w  =  y  ->  ( ( -.  E. x  x  e.  w  ->  w  e.  x )  <->  ( -.  E. x  x  e.  y  ->  y  e.  x
) ) ) )
3820, 27, 37cbvald 2090 . . . . . 6  |-  ( -. 
A. x  x  =  y  ->  ( A. w ( -.  E. x  x  e.  w  ->  w  e.  x )  <->  A. y ( -.  E. x  x  e.  y  ->  y  e.  x ) ) )
3919, 38exbid 1941 . . . . 5  |-  ( -. 
A. x  x  =  y  ->  ( E. x A. w ( -. 
E. x  x  e.  w  ->  w  e.  x )  <->  E. x A. y ( -.  E. x  x  e.  y  ->  y  e.  x ) ) )
4018, 39mpbii 214 . . . 4  |-  ( -. 
A. x  x  =  y  ->  E. x A. y ( -.  E. x  x  e.  y  ->  y  e.  x ) )
41 nfae 2122 . . . . 5  |-  F/ x A. x  x  =  z
42 nfae 2122 . . . . . 6  |-  F/ y A. x  x  =  z
43 axc112 1997 . . . . . . . . . 10  |-  ( A. x  x  =  z  ->  ( A. z  -.  x  e.  y  ->  A. x  -.  x  e.  y ) )
44 alnex 1659 . . . . . . . . . 10  |-  ( A. z  -.  x  e.  y  <->  -.  E. z  x  e.  y )
45 alnex 1659 . . . . . . . . . 10  |-  ( A. x  -.  x  e.  y  <->  -.  E. x  x  e.  y )
4643, 44, 453imtr3g 272 . . . . . . . . 9  |-  ( A. x  x  =  z  ->  ( -.  E. z  x  e.  y  ->  -. 
E. x  x  e.  y ) )
47 nd3 8965 . . . . . . . . . 10  |-  ( A. x  x  =  z  ->  -.  A. y  x  e.  z )
4847pm2.21d 109 . . . . . . . . 9  |-  ( A. x  x  =  z  ->  ( A. y  x  e.  z  ->  -.  E. x  x  e.  y ) )
4946, 48jad 165 . . . . . . . 8  |-  ( A. x  x  =  z  ->  ( ( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  -.  E. x  x  e.  y )
)
5049spsd 1922 . . . . . . 7  |-  ( A. x  x  =  z  ->  ( A. x ( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  -.  E. x  x  e.  y ) )
5150imim1d 78 . . . . . 6  |-  ( A. x  x  =  z  ->  ( ( -.  E. x  x  e.  y  ->  y  e.  x )  ->  ( A. x
( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) ) )
5242, 51alimd 1931 . . . . 5  |-  ( A. x  x  =  z  ->  ( A. y ( -.  E. x  x  e.  y  ->  y  e.  x )  ->  A. y
( A. x ( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) ) )
5341, 52eximd 1937 . . . 4  |-  ( A. x  x  =  z  ->  ( E. x A. y ( -.  E. x  x  e.  y  ->  y  e.  x )  ->  E. x A. y
( A. x ( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) ) )
5440, 53syl5com 31 . . 3  |-  ( -. 
A. x  x  =  y  ->  ( A. x  x  =  z  ->  E. x A. y
( A. x ( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) ) )
55 axpowndlem2 8974 . . 3  |-  ( -. 
A. x  x  =  y  ->  ( -.  A. x  x  =  z  ->  E. x A. y
( A. x ( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) ) )
5654, 55pm2.61d 161 . 2  |-  ( -. 
A. x  x  =  y  ->  E. x A. y ( A. x
( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) )
572, 56syl 17 1  |-  ( -.  x  =  y  ->  E. x A. y ( A. x ( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370   A.wal 1435    = wceq 1437   E.wex 1657    e. wcel 1872   (/)c0 3704   {csn 3941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-reg 8060
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-ral 2719  df-rex 2720  df-v 3024  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-nul 3705  df-pw 3926  df-sn 3942  df-pr 3944
This theorem is referenced by:  axpowndlem4  8976
  Copyright terms: Public domain W3C validator