MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpowndlem3 Structured version   Unicode version

Theorem axpowndlem3 8868
Description: Lemma for the Axiom of Power Sets with no distinct variable conditions. (Contributed by NM, 4-Jan-2002.) (Revised by Mario Carneiro, 10-Dec-2016.) (Proof shortened by Wolf Lammen, 10-Jun-2019.)
Assertion
Ref Expression
axpowndlem3  |-  ( -.  x  =  y  ->  E. x A. y ( A. x ( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) )
Distinct variable group:    y, z

Proof of Theorem axpowndlem3
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 sp 1796 . . 3  |-  ( A. x  x  =  y  ->  x  =  y )
21con3i 135 . 2  |-  ( -.  x  =  y  ->  -.  A. x  x  =  y )
3 p0ex 4580 . . . . . . . 8  |-  { (/) }  e.  _V
4 eleq2 2524 . . . . . . . . . 10  |-  ( x  =  { (/) }  ->  ( w  e.  x  <->  w  e.  {
(/) } ) )
54imbi2d 316 . . . . . . . . 9  |-  ( x  =  { (/) }  ->  ( ( w  =  (/)  ->  w  e.  x )  <-> 
( w  =  (/)  ->  w  e.  { (/) } ) ) )
65albidv 1680 . . . . . . . 8  |-  ( x  =  { (/) }  ->  ( A. w ( w  =  (/)  ->  w  e.  x )  <->  A. w
( w  =  (/)  ->  w  e.  { (/) } ) ) )
73, 6spcev 3163 . . . . . . 7  |-  ( A. w ( w  =  (/)  ->  w  e.  { (/)
} )  ->  E. x A. w ( w  =  (/)  ->  w  e.  x
) )
8 0ex 4523 . . . . . . . . 9  |-  (/)  e.  _V
98snid 4006 . . . . . . . 8  |-  (/)  e.  { (/)
}
10 eleq1 2523 . . . . . . . 8  |-  ( w  =  (/)  ->  ( w  e.  { (/) }  <->  (/)  e.  { (/)
} ) )
119, 10mpbiri 233 . . . . . . 7  |-  ( w  =  (/)  ->  w  e. 
{ (/) } )
127, 11mpg 1594 . . . . . 6  |-  E. x A. w ( w  =  (/)  ->  w  e.  x
)
13 neq0 3748 . . . . . . . . . 10  |-  ( -.  w  =  (/)  <->  E. x  x  e.  w )
1413con1bii 331 . . . . . . . . 9  |-  ( -. 
E. x  x  e.  w  <->  w  =  (/) )
1514imbi1i 325 . . . . . . . 8  |-  ( ( -.  E. x  x  e.  w  ->  w  e.  x )  <->  ( w  =  (/)  ->  w  e.  x ) )
1615albii 1611 . . . . . . 7  |-  ( A. w ( -.  E. x  x  e.  w  ->  w  e.  x )  <->  A. w ( w  =  (/)  ->  w  e.  x
) )
1716exbii 1635 . . . . . 6  |-  ( E. x A. w ( -.  E. x  x  e.  w  ->  w  e.  x )  <->  E. x A. w ( w  =  (/)  ->  w  e.  x
) )
1812, 17mpbir 209 . . . . 5  |-  E. x A. w ( -.  E. x  x  e.  w  ->  w  e.  x )
19 nfna1 1839 . . . . . 6  |-  F/ x  -.  A. x  x  =  y
20 nfnae 2015 . . . . . . 7  |-  F/ y  -.  A. x  x  =  y
21 nfcvf2 2638 . . . . . . . . . . 11  |-  ( -. 
A. x  x  =  y  ->  F/_ y x )
22 nfcvd 2614 . . . . . . . . . . 11  |-  ( -. 
A. x  x  =  y  ->  F/_ y w )
2321, 22nfeld 2621 . . . . . . . . . 10  |-  ( -. 
A. x  x  =  y  ->  F/ y  x  e.  w )
2419, 23nfexd 1887 . . . . . . . . 9  |-  ( -. 
A. x  x  =  y  ->  F/ y E. x  x  e.  w )
2524nfnd 1838 . . . . . . . 8  |-  ( -. 
A. x  x  =  y  ->  F/ y  -.  E. x  x  e.  w )
2622, 21nfeld 2621 . . . . . . . 8  |-  ( -. 
A. x  x  =  y  ->  F/ y  w  e.  x )
2725, 26nfimd 1852 . . . . . . 7  |-  ( -. 
A. x  x  =  y  ->  F/ y
( -.  E. x  x  e.  w  ->  w  e.  x ) )
28 nfeqf2 1998 . . . . . . . . . . . 12  |-  ( -. 
A. x  x  =  y  ->  F/ x  w  =  y )
2919, 28nfan1 1862 . . . . . . . . . . 11  |-  F/ x
( -.  A. x  x  =  y  /\  w  =  y )
30 elequ2 1763 . . . . . . . . . . . 12  |-  ( w  =  y  ->  (
x  e.  w  <->  x  e.  y ) )
3130adantl 466 . . . . . . . . . . 11  |-  ( ( -.  A. x  x  =  y  /\  w  =  y )  -> 
( x  e.  w  <->  x  e.  y ) )
3229, 31exbid 1822 . . . . . . . . . 10  |-  ( ( -.  A. x  x  =  y  /\  w  =  y )  -> 
( E. x  x  e.  w  <->  E. x  x  e.  y )
)
3332notbid 294 . . . . . . . . 9  |-  ( ( -.  A. x  x  =  y  /\  w  =  y )  -> 
( -.  E. x  x  e.  w  <->  -.  E. x  x  e.  y )
)
34 elequ1 1761 . . . . . . . . . 10  |-  ( w  =  y  ->  (
w  e.  x  <->  y  e.  x ) )
3534adantl 466 . . . . . . . . 9  |-  ( ( -.  A. x  x  =  y  /\  w  =  y )  -> 
( w  e.  x  <->  y  e.  x ) )
3633, 35imbi12d 320 . . . . . . . 8  |-  ( ( -.  A. x  x  =  y  /\  w  =  y )  -> 
( ( -.  E. x  x  e.  w  ->  w  e.  x )  <-> 
( -.  E. x  x  e.  y  ->  y  e.  x ) ) )
3736ex 434 . . . . . . 7  |-  ( -. 
A. x  x  =  y  ->  ( w  =  y  ->  ( ( -.  E. x  x  e.  w  ->  w  e.  x )  <->  ( -.  E. x  x  e.  y  ->  y  e.  x
) ) ) )
3820, 27, 37cbvald 1982 . . . . . 6  |-  ( -. 
A. x  x  =  y  ->  ( A. w ( -.  E. x  x  e.  w  ->  w  e.  x )  <->  A. y ( -.  E. x  x  e.  y  ->  y  e.  x ) ) )
3919, 38exbid 1822 . . . . 5  |-  ( -. 
A. x  x  =  y  ->  ( E. x A. w ( -. 
E. x  x  e.  w  ->  w  e.  x )  <->  E. x A. y ( -.  E. x  x  e.  y  ->  y  e.  x ) ) )
4018, 39mpbii 211 . . . 4  |-  ( -. 
A. x  x  =  y  ->  E. x A. y ( -.  E. x  x  e.  y  ->  y  e.  x ) )
41 nfa1 1833 . . . . 5  |-  F/ x A. x  x  =  z
42 nfae 2013 . . . . . 6  |-  F/ y A. x  x  =  z
43 axc112 1872 . . . . . . . . . 10  |-  ( A. x  x  =  z  ->  ( A. z  -.  x  e.  y  ->  A. x  -.  x  e.  y ) )
44 alnex 1589 . . . . . . . . . 10  |-  ( A. z  -.  x  e.  y  <->  -.  E. z  x  e.  y )
45 alnex 1589 . . . . . . . . . 10  |-  ( A. x  -.  x  e.  y  <->  -.  E. x  x  e.  y )
4643, 44, 453imtr3g 269 . . . . . . . . 9  |-  ( A. x  x  =  z  ->  ( -.  E. z  x  e.  y  ->  -. 
E. x  x  e.  y ) )
47 nd3 8857 . . . . . . . . . 10  |-  ( A. x  x  =  z  ->  -.  A. y  x  e.  z )
4847pm2.21d 106 . . . . . . . . 9  |-  ( A. x  x  =  z  ->  ( A. y  x  e.  z  ->  -.  E. x  x  e.  y ) )
4946, 48jad 162 . . . . . . . 8  |-  ( A. x  x  =  z  ->  ( ( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  -.  E. x  x  e.  y )
)
5049spsd 1804 . . . . . . 7  |-  ( A. x  x  =  z  ->  ( A. x ( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  -.  E. x  x  e.  y ) )
5150imim1d 75 . . . . . 6  |-  ( A. x  x  =  z  ->  ( ( -.  E. x  x  e.  y  ->  y  e.  x )  ->  ( A. x
( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) ) )
5242, 51alimd 1812 . . . . 5  |-  ( A. x  x  =  z  ->  ( A. y ( -.  E. x  x  e.  y  ->  y  e.  x )  ->  A. y
( A. x ( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) ) )
5341, 52eximd 1818 . . . 4  |-  ( A. x  x  =  z  ->  ( E. x A. y ( -.  E. x  x  e.  y  ->  y  e.  x )  ->  E. x A. y
( A. x ( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) ) )
5440, 53syl5com 30 . . 3  |-  ( -. 
A. x  x  =  y  ->  ( A. x  x  =  z  ->  E. x A. y
( A. x ( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) ) )
55 axpowndlem2 8866 . . 3  |-  ( -. 
A. x  x  =  y  ->  ( -.  A. x  x  =  z  ->  E. x A. y
( A. x ( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) ) )
5654, 55pm2.61d 158 . 2  |-  ( -. 
A. x  x  =  y  ->  E. x A. y ( A. x
( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) )
572, 56syl 16 1  |-  ( -.  x  =  y  ->  E. x A. y ( A. x ( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1368    = wceq 1370   E.wex 1587    e. wcel 1758   (/)c0 3738   {csn 3978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-reg 7911
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-v 3073  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-nul 3739  df-pw 3963  df-sn 3979  df-pr 3981
This theorem is referenced by:  axpowndlem4  8870
  Copyright terms: Public domain W3C validator