MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpowndlem1 Structured version   Visualization version   Unicode version

Theorem axpowndlem1 9040
Description: Lemma for the Axiom of Power Sets with no distinct variable conditions. (Contributed by NM, 4-Jan-2002.)
Assertion
Ref Expression
axpowndlem1  |-  ( A. x  x  =  y  ->  ( -.  x  =  y  ->  E. x A. y ( A. x
( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) ) )

Proof of Theorem axpowndlem1
StepHypRef Expression
1 pm2.24 112 . 2  |-  ( x  =  y  ->  ( -.  x  =  y  ->  E. x A. y
( A. x ( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) ) )
21sps 1963 1  |-  ( A. x  x  =  y  ->  ( -.  x  =  y  ->  E. x A. y ( A. x
( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1450   E.wex 1671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-12 1950
This theorem depends on definitions:  df-bi 190  df-ex 1672
This theorem is referenced by:  axpownd  9044
  Copyright terms: Public domain W3C validator