MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpownd Structured version   Unicode version

Theorem axpownd 8974
Description: A version of the Axiom of Power Sets with no distinct variable conditions. (Contributed by NM, 4-Jan-2002.)
Assertion
Ref Expression
axpownd  |-  ( -.  x  =  y  ->  E. x A. y ( A. x ( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) )

Proof of Theorem axpownd
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 axpowndlem4 8973 . 2  |-  ( -. 
A. y  y  =  x  ->  ( -.  A. y  y  =  z  ->  ( -.  x  =  y  ->  E. x A. y ( A. x
( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) ) ) )
2 axpowndlem1 8968 . . 3  |-  ( A. x  x  =  y  ->  ( -.  x  =  y  ->  E. x A. y ( A. x
( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) ) )
32aecoms 2025 . 2  |-  ( A. y  y  =  x  ->  ( -.  x  =  y  ->  E. x A. y ( A. x
( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) ) )
42a1d 25 . . 3  |-  ( A. x  x  =  y  ->  ( A. y  y  =  z  ->  ( -.  x  =  y  ->  E. x A. y
( A. x ( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) ) ) )
5 nfnae 2031 . . . . . . . 8  |-  F/ y  -.  A. x  x  =  y
6 nfae 2029 . . . . . . . 8  |-  F/ y A. y  y  =  z
75, 6nfan 1875 . . . . . . 7  |-  F/ y ( -.  A. x  x  =  y  /\  A. y  y  =  z )
8 el 4629 . . . . . . . . . . . . 13  |-  E. w  x  e.  w
9 nfcvf2 2655 . . . . . . . . . . . . . . 15  |-  ( -. 
A. x  x  =  y  ->  F/_ y x )
10 nfcvd 2630 . . . . . . . . . . . . . . 15  |-  ( -. 
A. x  x  =  y  ->  F/_ y w )
119, 10nfeld 2637 . . . . . . . . . . . . . 14  |-  ( -. 
A. x  x  =  y  ->  F/ y  x  e.  w )
12 elequ2 1772 . . . . . . . . . . . . . . 15  |-  ( w  =  y  ->  (
x  e.  w  <->  x  e.  y ) )
1312a1i 11 . . . . . . . . . . . . . 14  |-  ( -. 
A. x  x  =  y  ->  ( w  =  y  ->  ( x  e.  w  <->  x  e.  y ) ) )
145, 11, 13cbvexd 1999 . . . . . . . . . . . . 13  |-  ( -. 
A. x  x  =  y  ->  ( E. w  x  e.  w  <->  E. y  x  e.  y ) )
158, 14mpbii 211 . . . . . . . . . . . 12  |-  ( -. 
A. x  x  =  y  ->  E. y  x  e.  y )
16 19.8a 1806 . . . . . . . . . . . 12  |-  ( E. y  x  e.  y  ->  E. x E. y  x  e.  y )
1715, 16syl 16 . . . . . . . . . . 11  |-  ( -. 
A. x  x  =  y  ->  E. x E. y  x  e.  y )
18 df-ex 1597 . . . . . . . . . . 11  |-  ( E. x E. y  x  e.  y  <->  -.  A. x  -.  E. y  x  e.  y )
1917, 18sylib 196 . . . . . . . . . 10  |-  ( -. 
A. x  x  =  y  ->  -.  A. x  -.  E. y  x  e.  y )
2019adantr 465 . . . . . . . . 9  |-  ( ( -.  A. x  x  =  y  /\  A. y  y  =  z
)  ->  -.  A. x  -.  E. y  x  e.  y )
21 biidd 237 . . . . . . . . . . . . . 14  |-  ( A. y  y  =  z  ->  ( -.  x  e.  y  <->  -.  x  e.  y ) )
2221dral1 2040 . . . . . . . . . . . . 13  |-  ( A. y  y  =  z  ->  ( A. y  -.  x  e.  y  <->  A. z  -.  x  e.  y
) )
23 alnex 1598 . . . . . . . . . . . . 13  |-  ( A. y  -.  x  e.  y  <->  -.  E. y  x  e.  y )
24 alnex 1598 . . . . . . . . . . . . 13  |-  ( A. z  -.  x  e.  y  <->  -.  E. z  x  e.  y )
2522, 23, 243bitr3g 287 . . . . . . . . . . . 12  |-  ( A. y  y  =  z  ->  ( -.  E. y  x  e.  y  <->  -.  E. z  x  e.  y )
)
26 nd2 8959 . . . . . . . . . . . . 13  |-  ( A. y  y  =  z  ->  -.  A. y  x  e.  z )
27 mtt 339 . . . . . . . . . . . . 13  |-  ( -. 
A. y  x  e.  z  ->  ( -.  E. z  x  e.  y  <-> 
( E. z  x  e.  y  ->  A. y  x  e.  z )
) )
2826, 27syl 16 . . . . . . . . . . . 12  |-  ( A. y  y  =  z  ->  ( -.  E. z  x  e.  y  <->  ( E. z  x  e.  y  ->  A. y  x  e.  z ) ) )
2925, 28bitrd 253 . . . . . . . . . . 11  |-  ( A. y  y  =  z  ->  ( -.  E. y  x  e.  y  <->  ( E. z  x  e.  y  ->  A. y  x  e.  z ) ) )
3029dral2 2039 . . . . . . . . . 10  |-  ( A. y  y  =  z  ->  ( A. x  -.  E. y  x  e.  y  <->  A. x ( E. z  x  e.  y  ->  A. y  x  e.  z ) ) )
3130adantl 466 . . . . . . . . 9  |-  ( ( -.  A. x  x  =  y  /\  A. y  y  =  z
)  ->  ( A. x  -.  E. y  x  e.  y  <->  A. x
( E. z  x  e.  y  ->  A. y  x  e.  z )
) )
3220, 31mtbid 300 . . . . . . . 8  |-  ( ( -.  A. x  x  =  y  /\  A. y  y  =  z
)  ->  -.  A. x
( E. z  x  e.  y  ->  A. y  x  e.  z )
)
3332pm2.21d 106 . . . . . . 7  |-  ( ( -.  A. x  x  =  y  /\  A. y  y  =  z
)  ->  ( A. x ( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) )
347, 33alrimi 1825 . . . . . 6  |-  ( ( -.  A. x  x  =  y  /\  A. y  y  =  z
)  ->  A. y
( A. x ( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) )
35 19.8a 1806 . . . . . 6  |-  ( A. y ( A. x
( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x )  ->  E. x A. y
( A. x ( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) )
3634, 35syl 16 . . . . 5  |-  ( ( -.  A. x  x  =  y  /\  A. y  y  =  z
)  ->  E. x A. y ( A. x
( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) )
3736a1d 25 . . . 4  |-  ( ( -.  A. x  x  =  y  /\  A. y  y  =  z
)  ->  ( -.  x  =  y  ->  E. x A. y ( A. x ( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) ) )
3837ex 434 . . 3  |-  ( -. 
A. x  x  =  y  ->  ( A. y  y  =  z  ->  ( -.  x  =  y  ->  E. x A. y ( A. x
( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) ) ) )
394, 38pm2.61i 164 . 2  |-  ( A. y  y  =  z  ->  ( -.  x  =  y  ->  E. x A. y ( A. x
( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) ) )
401, 3, 39pm2.61ii 165 1  |-  ( -.  x  =  y  ->  E. x A. y ( A. x ( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1377   E.wex 1596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-reg 8014
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-pw 4012  df-sn 4028  df-pr 4030
This theorem is referenced by:  zfcndpow  8990  axpowprim  28551
  Copyright terms: Public domain W3C validator