MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpownd Structured version   Unicode version

Theorem axpownd 8870
Description: A version of the Axiom of Power Sets with no distinct variable conditions. (Contributed by NM, 4-Jan-2002.)
Assertion
Ref Expression
axpownd  |-  ( -.  x  =  y  ->  E. x A. y ( A. x ( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) )

Proof of Theorem axpownd
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 axpowndlem4 8869 . 2  |-  ( -. 
A. y  y  =  x  ->  ( -.  A. y  y  =  z  ->  ( -.  x  =  y  ->  E. x A. y ( A. x
( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) ) ) )
2 axpowndlem1 8864 . . 3  |-  ( A. x  x  =  y  ->  ( -.  x  =  y  ->  E. x A. y ( A. x
( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) ) )
32aecoms 2009 . 2  |-  ( A. y  y  =  x  ->  ( -.  x  =  y  ->  E. x A. y ( A. x
( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) ) )
42a1d 25 . . 3  |-  ( A. x  x  =  y  ->  ( A. y  y  =  z  ->  ( -.  x  =  y  ->  E. x A. y
( A. x ( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) ) ) )
5 nfnae 2015 . . . . . . . 8  |-  F/ y  -.  A. x  x  =  y
6 nfae 2013 . . . . . . . 8  |-  F/ y A. y  y  =  z
75, 6nfan 1863 . . . . . . 7  |-  F/ y ( -.  A. x  x  =  y  /\  A. y  y  =  z )
8 el 4574 . . . . . . . . . . . . 13  |-  E. w  x  e.  w
9 nfcvf2 2638 . . . . . . . . . . . . . . 15  |-  ( -. 
A. x  x  =  y  ->  F/_ y x )
10 nfcvd 2614 . . . . . . . . . . . . . . 15  |-  ( -. 
A. x  x  =  y  ->  F/_ y w )
119, 10nfeld 2621 . . . . . . . . . . . . . 14  |-  ( -. 
A. x  x  =  y  ->  F/ y  x  e.  w )
12 elequ2 1763 . . . . . . . . . . . . . . 15  |-  ( w  =  y  ->  (
x  e.  w  <->  x  e.  y ) )
1312a1i 11 . . . . . . . . . . . . . 14  |-  ( -. 
A. x  x  =  y  ->  ( w  =  y  ->  ( x  e.  w  <->  x  e.  y ) ) )
145, 11, 13cbvexd 1983 . . . . . . . . . . . . 13  |-  ( -. 
A. x  x  =  y  ->  ( E. w  x  e.  w  <->  E. y  x  e.  y ) )
158, 14mpbii 211 . . . . . . . . . . . 12  |-  ( -. 
A. x  x  =  y  ->  E. y  x  e.  y )
16 19.8a 1795 . . . . . . . . . . . 12  |-  ( E. y  x  e.  y  ->  E. x E. y  x  e.  y )
1715, 16syl 16 . . . . . . . . . . 11  |-  ( -. 
A. x  x  =  y  ->  E. x E. y  x  e.  y )
18 df-ex 1588 . . . . . . . . . . 11  |-  ( E. x E. y  x  e.  y  <->  -.  A. x  -.  E. y  x  e.  y )
1917, 18sylib 196 . . . . . . . . . 10  |-  ( -. 
A. x  x  =  y  ->  -.  A. x  -.  E. y  x  e.  y )
2019adantr 465 . . . . . . . . 9  |-  ( ( -.  A. x  x  =  y  /\  A. y  y  =  z
)  ->  -.  A. x  -.  E. y  x  e.  y )
21 biidd 237 . . . . . . . . . . . . . 14  |-  ( A. y  y  =  z  ->  ( -.  x  e.  y  <->  -.  x  e.  y ) )
2221dral1 2024 . . . . . . . . . . . . 13  |-  ( A. y  y  =  z  ->  ( A. y  -.  x  e.  y  <->  A. z  -.  x  e.  y
) )
23 alnex 1589 . . . . . . . . . . . . 13  |-  ( A. y  -.  x  e.  y  <->  -.  E. y  x  e.  y )
24 alnex 1589 . . . . . . . . . . . . 13  |-  ( A. z  -.  x  e.  y  <->  -.  E. z  x  e.  y )
2522, 23, 243bitr3g 287 . . . . . . . . . . . 12  |-  ( A. y  y  =  z  ->  ( -.  E. y  x  e.  y  <->  -.  E. z  x  e.  y )
)
26 nd2 8855 . . . . . . . . . . . . 13  |-  ( A. y  y  =  z  ->  -.  A. y  x  e.  z )
27 mtt 339 . . . . . . . . . . . . 13  |-  ( -. 
A. y  x  e.  z  ->  ( -.  E. z  x  e.  y  <-> 
( E. z  x  e.  y  ->  A. y  x  e.  z )
) )
2826, 27syl 16 . . . . . . . . . . . 12  |-  ( A. y  y  =  z  ->  ( -.  E. z  x  e.  y  <->  ( E. z  x  e.  y  ->  A. y  x  e.  z ) ) )
2925, 28bitrd 253 . . . . . . . . . . 11  |-  ( A. y  y  =  z  ->  ( -.  E. y  x  e.  y  <->  ( E. z  x  e.  y  ->  A. y  x  e.  z ) ) )
3029dral2 2023 . . . . . . . . . 10  |-  ( A. y  y  =  z  ->  ( A. x  -.  E. y  x  e.  y  <->  A. x ( E. z  x  e.  y  ->  A. y  x  e.  z ) ) )
3130adantl 466 . . . . . . . . 9  |-  ( ( -.  A. x  x  =  y  /\  A. y  y  =  z
)  ->  ( A. x  -.  E. y  x  e.  y  <->  A. x
( E. z  x  e.  y  ->  A. y  x  e.  z )
) )
3220, 31mtbid 300 . . . . . . . 8  |-  ( ( -.  A. x  x  =  y  /\  A. y  y  =  z
)  ->  -.  A. x
( E. z  x  e.  y  ->  A. y  x  e.  z )
)
3332pm2.21d 106 . . . . . . 7  |-  ( ( -.  A. x  x  =  y  /\  A. y  y  =  z
)  ->  ( A. x ( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) )
347, 33alrimi 1813 . . . . . 6  |-  ( ( -.  A. x  x  =  y  /\  A. y  y  =  z
)  ->  A. y
( A. x ( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) )
35 19.8a 1795 . . . . . 6  |-  ( A. y ( A. x
( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x )  ->  E. x A. y
( A. x ( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) )
3634, 35syl 16 . . . . 5  |-  ( ( -.  A. x  x  =  y  /\  A. y  y  =  z
)  ->  E. x A. y ( A. x
( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) )
3736a1d 25 . . . 4  |-  ( ( -.  A. x  x  =  y  /\  A. y  y  =  z
)  ->  ( -.  x  =  y  ->  E. x A. y ( A. x ( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) ) )
3837ex 434 . . 3  |-  ( -. 
A. x  x  =  y  ->  ( A. y  y  =  z  ->  ( -.  x  =  y  ->  E. x A. y ( A. x
( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) ) ) )
394, 38pm2.61i 164 . 2  |-  ( A. y  y  =  z  ->  ( -.  x  =  y  ->  E. x A. y ( A. x
( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) ) )
401, 3, 39pm2.61ii 165 1  |-  ( -.  x  =  y  ->  E. x A. y ( A. x ( E. z  x  e.  y  ->  A. y  x  e.  z )  ->  y  e.  x ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1368   E.wex 1587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-reg 7910
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-v 3072  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-nul 3738  df-pw 3962  df-sn 3978  df-pr 3980
This theorem is referenced by:  zfcndpow  8886  axpowprim  27491
  Copyright terms: Public domain W3C validator