MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axmulgt0 Structured version   Unicode version

Theorem axmulgt0 9676
Description: The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-mulgt0 9586 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
axmulgt0  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  < 
A  /\  0  <  B )  ->  0  <  ( A  x.  B ) ) )

Proof of Theorem axmulgt0
StepHypRef Expression
1 ax-pre-mulgt0 9586 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  <RR  A  /\  0  <RR  B )  ->  0  <RR  ( A  x.  B ) ) )
2 0re 9613 . . . 4  |-  0  e.  RR
3 ltxrlt 9672 . . . 4  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  <->  0 
<RR  A ) )
42, 3mpan 670 . . 3  |-  ( A  e.  RR  ->  (
0  <  A  <->  0  <RR  A ) )
5 ltxrlt 9672 . . . 4  |-  ( ( 0  e.  RR  /\  B  e.  RR )  ->  ( 0  <  B  <->  0 
<RR  B ) )
62, 5mpan 670 . . 3  |-  ( B  e.  RR  ->  (
0  <  B  <->  0  <RR  B ) )
74, 6bi2anan9 873 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  < 
A  /\  0  <  B )  <->  ( 0  <RR  A  /\  0  <RR  B ) ) )
8 remulcl 9594 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
9 ltxrlt 9672 . . 3  |-  ( ( 0  e.  RR  /\  ( A  x.  B
)  e.  RR )  ->  ( 0  < 
( A  x.  B
)  <->  0  <RR  ( A  x.  B ) ) )
102, 8, 9sylancr 663 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <  ( A  x.  B )  <->  0 
<RR  ( A  x.  B
) ) )
111, 7, 103imtr4d 268 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  < 
A  /\  0  <  B )  ->  0  <  ( A  x.  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1819   class class class wbr 4456  (class class class)co 6296   RRcr 9508   0cc0 9509    <RR cltrr 9513    x. cmul 9514    < clt 9645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-i2m1 9577  ax-1ne0 9578  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-ltxr 9650
This theorem is referenced by:  mulgt0  9679  mulgt0i  9734  sin02gt0  13938  sinq12gt0  23025
  Copyright terms: Public domain W3C validator