MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axmulass Structured version   Unicode version

Theorem axmulass 9530
Description: Multiplication of complex numbers is associative. Axiom 10 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-mulass 9554. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axmulass  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )

Proof of Theorem axmulass
Dummy variables  x  y  z  w  v  u  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcnqs 9515 . 2  |-  CC  =  ( ( R.  X.  R. ) /. `'  _E  )
2 mulcnsrec 9517 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( [ <. x ,  y >. ] `'  _E  x.  [ <. z ,  w >. ] `'  _E  )  =  [ <. ( ( x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) ) ,  ( ( y  .R  z
)  +R  ( x  .R  w ) )
>. ] `'  _E  )
3 mulcnsrec 9517 . 2  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( [ <. z ,  w >. ] `'  _E  x.  [ <. v ,  u >. ] `'  _E  )  =  [ <. ( ( z  .R  v )  +R  ( -1R  .R  ( w  .R  u ) ) ) ,  ( ( w  .R  v )  +R  ( z  .R  u
) ) >. ] `'  _E  )
4 mulcnsrec 9517 . 2  |-  ( ( ( ( ( x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) )  e.  R.  /\  ( ( y  .R  z )  +R  (
x  .R  w )
)  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( [ <. ( ( x  .R  z )  +R  ( -1R  .R  ( y  .R  w ) ) ) ,  ( ( y  .R  z )  +R  ( x  .R  w
) ) >. ] `'  _E  x.  [ <. v ,  u >. ] `'  _E  )  =  [ <. (
( ( ( x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) )  .R  v
)  +R  ( -1R 
.R  ( ( ( y  .R  z )  +R  ( x  .R  w ) )  .R  u ) ) ) ,  ( ( ( ( y  .R  z
)  +R  ( x  .R  w ) )  .R  v )  +R  ( ( ( x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) )  .R  u
) ) >. ] `'  _E  )
5 mulcnsrec 9517 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( ( ( z  .R  v )  +R  ( -1R  .R  (
w  .R  u )
) )  e.  R.  /\  ( ( w  .R  v )  +R  (
z  .R  u )
)  e.  R. )
)  ->  ( [ <. x ,  y >. ] `'  _E  x.  [ <. ( ( z  .R  v )  +R  ( -1R  .R  (
w  .R  u )
) ) ,  ( ( w  .R  v
)  +R  ( z  .R  u ) )
>. ] `'  _E  )  =  [ <. ( ( x  .R  ( ( z  .R  v )  +R  ( -1R  .R  (
w  .R  u )
) ) )  +R  ( -1R  .R  (
y  .R  ( (
w  .R  v )  +R  ( z  .R  u
) ) ) ) ) ,  ( ( y  .R  ( ( z  .R  v )  +R  ( -1R  .R  ( w  .R  u
) ) ) )  +R  ( x  .R  ( ( w  .R  v )  +R  (
z  .R  u )
) ) ) >. ] `'  _E  )
6 mulclsr 9457 . . . . 5  |-  ( ( x  e.  R.  /\  z  e.  R. )  ->  ( x  .R  z
)  e.  R. )
7 m1r 9455 . . . . . 6  |-  -1R  e.  R.
8 mulclsr 9457 . . . . . 6  |-  ( ( y  e.  R.  /\  w  e.  R. )  ->  ( y  .R  w
)  e.  R. )
9 mulclsr 9457 . . . . . 6  |-  ( ( -1R  e.  R.  /\  ( y  .R  w
)  e.  R. )  ->  ( -1R  .R  (
y  .R  w )
)  e.  R. )
107, 8, 9sylancr 663 . . . . 5  |-  ( ( y  e.  R.  /\  w  e.  R. )  ->  ( -1R  .R  (
y  .R  w )
)  e.  R. )
11 addclsr 9456 . . . . 5  |-  ( ( ( x  .R  z
)  e.  R.  /\  ( -1R  .R  ( y  .R  w ) )  e.  R. )  -> 
( ( x  .R  z )  +R  ( -1R  .R  ( y  .R  w ) ) )  e.  R. )
126, 10, 11syl2an 477 . . . 4  |-  ( ( ( x  e.  R.  /\  z  e.  R. )  /\  ( y  e.  R.  /\  w  e.  R. )
)  ->  ( (
x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) )  e.  R. )
1312an4s 824 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( (
x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) )  e.  R. )
14 mulclsr 9457 . . . . 5  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( y  .R  z
)  e.  R. )
15 mulclsr 9457 . . . . 5  |-  ( ( x  e.  R.  /\  w  e.  R. )  ->  ( x  .R  w
)  e.  R. )
16 addclsr 9456 . . . . 5  |-  ( ( ( y  .R  z
)  e.  R.  /\  ( x  .R  w
)  e.  R. )  ->  ( ( y  .R  z )  +R  (
x  .R  w )
)  e.  R. )
1714, 15, 16syl2anr 478 . . . 4  |-  ( ( ( x  e.  R.  /\  w  e.  R. )  /\  ( y  e.  R.  /\  z  e.  R. )
)  ->  ( (
y  .R  z )  +R  ( x  .R  w
) )  e.  R. )
1817an42s 825 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( (
y  .R  z )  +R  ( x  .R  w
) )  e.  R. )
1913, 18jca 532 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( (
( x  .R  z
)  +R  ( -1R 
.R  ( y  .R  w ) ) )  e.  R.  /\  (
( y  .R  z
)  +R  ( x  .R  w ) )  e.  R. ) )
20 mulclsr 9457 . . . . 5  |-  ( ( z  e.  R.  /\  v  e.  R. )  ->  ( z  .R  v
)  e.  R. )
21 mulclsr 9457 . . . . . 6  |-  ( ( w  e.  R.  /\  u  e.  R. )  ->  ( w  .R  u
)  e.  R. )
22 mulclsr 9457 . . . . . 6  |-  ( ( -1R  e.  R.  /\  ( w  .R  u
)  e.  R. )  ->  ( -1R  .R  (
w  .R  u )
)  e.  R. )
237, 21, 22sylancr 663 . . . . 5  |-  ( ( w  e.  R.  /\  u  e.  R. )  ->  ( -1R  .R  (
w  .R  u )
)  e.  R. )
24 addclsr 9456 . . . . 5  |-  ( ( ( z  .R  v
)  e.  R.  /\  ( -1R  .R  ( w  .R  u ) )  e.  R. )  -> 
( ( z  .R  v )  +R  ( -1R  .R  ( w  .R  u ) ) )  e.  R. )
2520, 23, 24syl2an 477 . . . 4  |-  ( ( ( z  e.  R.  /\  v  e.  R. )  /\  ( w  e.  R.  /\  u  e.  R. )
)  ->  ( (
z  .R  v )  +R  ( -1R  .R  (
w  .R  u )
) )  e.  R. )
2625an4s 824 . . 3  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
z  .R  v )  +R  ( -1R  .R  (
w  .R  u )
) )  e.  R. )
27 mulclsr 9457 . . . . 5  |-  ( ( w  e.  R.  /\  v  e.  R. )  ->  ( w  .R  v
)  e.  R. )
28 mulclsr 9457 . . . . 5  |-  ( ( z  e.  R.  /\  u  e.  R. )  ->  ( z  .R  u
)  e.  R. )
29 addclsr 9456 . . . . 5  |-  ( ( ( w  .R  v
)  e.  R.  /\  ( z  .R  u
)  e.  R. )  ->  ( ( w  .R  v )  +R  (
z  .R  u )
)  e.  R. )
3027, 28, 29syl2anr 478 . . . 4  |-  ( ( ( z  e.  R.  /\  u  e.  R. )  /\  ( w  e.  R.  /\  v  e.  R. )
)  ->  ( (
w  .R  v )  +R  ( z  .R  u
) )  e.  R. )
3130an42s 825 . . 3  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
w  .R  v )  +R  ( z  .R  u
) )  e.  R. )
3226, 31jca 532 . 2  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
( z  .R  v
)  +R  ( -1R 
.R  ( w  .R  u ) ) )  e.  R.  /\  (
( w  .R  v
)  +R  ( z  .R  u ) )  e.  R. ) )
33 ovex 6307 . . . 4  |-  ( x  .R  ( z  .R  v ) )  e. 
_V
34 ovex 6307 . . . 4  |-  ( x  .R  ( -1R  .R  ( w  .R  u
) ) )  e. 
_V
35 ovex 6307 . . . 4  |-  ( -1R 
.R  ( y  .R  ( w  .R  v
) ) )  e. 
_V
36 addcomsr 9460 . . . 4  |-  ( f  +R  g )  =  ( g  +R  f
)
37 addasssr 9461 . . . 4  |-  ( ( f  +R  g )  +R  h )  =  ( f  +R  (
g  +R  h ) )
38 ovex 6307 . . . 4  |-  ( -1R 
.R  ( y  .R  ( z  .R  u
) ) )  e. 
_V
3933, 34, 35, 36, 37, 38caov42 6490 . . 3  |-  ( ( ( x  .R  (
z  .R  v )
)  +R  ( x  .R  ( -1R  .R  ( w  .R  u
) ) ) )  +R  ( ( -1R 
.R  ( y  .R  ( w  .R  v
) ) )  +R  ( -1R  .R  (
y  .R  ( z  .R  u ) ) ) ) )  =  ( ( ( x  .R  ( z  .R  v
) )  +R  ( -1R  .R  ( y  .R  ( w  .R  v
) ) ) )  +R  ( ( -1R 
.R  ( y  .R  ( z  .R  u
) ) )  +R  ( x  .R  ( -1R  .R  ( w  .R  u ) ) ) ) )
40 distrsr 9464 . . . 4  |-  ( x  .R  ( ( z  .R  v )  +R  ( -1R  .R  (
w  .R  u )
) ) )  =  ( ( x  .R  ( z  .R  v
) )  +R  (
x  .R  ( -1R  .R  ( w  .R  u
) ) ) )
41 distrsr 9464 . . . . . 6  |-  ( y  .R  ( ( w  .R  v )  +R  ( z  .R  u
) ) )  =  ( ( y  .R  ( w  .R  v
) )  +R  (
y  .R  ( z  .R  u ) ) )
4241oveq2i 6293 . . . . 5  |-  ( -1R 
.R  ( y  .R  ( ( w  .R  v )  +R  (
z  .R  u )
) ) )  =  ( -1R  .R  (
( y  .R  (
w  .R  v )
)  +R  ( y  .R  ( z  .R  u ) ) ) )
43 distrsr 9464 . . . . 5  |-  ( -1R 
.R  ( ( y  .R  ( w  .R  v ) )  +R  ( y  .R  (
z  .R  u )
) ) )  =  ( ( -1R  .R  ( y  .R  (
w  .R  v )
) )  +R  ( -1R  .R  ( y  .R  ( z  .R  u
) ) ) )
4442, 43eqtri 2496 . . . 4  |-  ( -1R 
.R  ( y  .R  ( ( w  .R  v )  +R  (
z  .R  u )
) ) )  =  ( ( -1R  .R  ( y  .R  (
w  .R  v )
) )  +R  ( -1R  .R  ( y  .R  ( z  .R  u
) ) ) )
4540, 44oveq12i 6294 . . 3  |-  ( ( x  .R  ( ( z  .R  v )  +R  ( -1R  .R  ( w  .R  u
) ) ) )  +R  ( -1R  .R  ( y  .R  (
( w  .R  v
)  +R  ( z  .R  u ) ) ) ) )  =  ( ( ( x  .R  ( z  .R  v ) )  +R  ( x  .R  ( -1R  .R  ( w  .R  u ) ) ) )  +R  ( ( -1R  .R  ( y  .R  ( w  .R  v ) ) )  +R  ( -1R  .R  ( y  .R  (
z  .R  u )
) ) ) )
46 vex 3116 . . . . . 6  |-  x  e. 
_V
477elexi 3123 . . . . . 6  |-  -1R  e.  _V
48 vex 3116 . . . . . 6  |-  z  e. 
_V
49 mulcomsr 9462 . . . . . 6  |-  ( f  .R  g )  =  ( g  .R  f
)
50 distrsr 9464 . . . . . 6  |-  ( f  .R  ( g  +R  h ) )  =  ( ( f  .R  g )  +R  (
f  .R  h )
)
51 ovex 6307 . . . . . 6  |-  ( y  .R  w )  e. 
_V
52 vex 3116 . . . . . 6  |-  v  e. 
_V
53 mulasssr 9463 . . . . . 6  |-  ( ( f  .R  g )  .R  h )  =  ( f  .R  (
g  .R  h )
)
5446, 47, 48, 49, 50, 51, 52, 53caovdilem 6492 . . . . 5  |-  ( ( ( x  .R  z
)  +R  ( -1R 
.R  ( y  .R  w ) ) )  .R  v )  =  ( ( x  .R  ( z  .R  v
) )  +R  ( -1R  .R  ( ( y  .R  w )  .R  v ) ) )
55 mulasssr 9463 . . . . . . 7  |-  ( ( y  .R  w )  .R  v )  =  ( y  .R  (
w  .R  v )
)
5655oveq2i 6293 . . . . . 6  |-  ( -1R 
.R  ( ( y  .R  w )  .R  v ) )  =  ( -1R  .R  (
y  .R  ( w  .R  v ) ) )
5756oveq2i 6293 . . . . 5  |-  ( ( x  .R  ( z  .R  v ) )  +R  ( -1R  .R  ( ( y  .R  w )  .R  v
) ) )  =  ( ( x  .R  ( z  .R  v
) )  +R  ( -1R  .R  ( y  .R  ( w  .R  v
) ) ) )
5854, 57eqtri 2496 . . . 4  |-  ( ( ( x  .R  z
)  +R  ( -1R 
.R  ( y  .R  w ) ) )  .R  v )  =  ( ( x  .R  ( z  .R  v
) )  +R  ( -1R  .R  ( y  .R  ( w  .R  v
) ) ) )
59 vex 3116 . . . . . . 7  |-  y  e. 
_V
60 vex 3116 . . . . . . 7  |-  w  e. 
_V
61 vex 3116 . . . . . . 7  |-  u  e. 
_V
6259, 46, 48, 49, 50, 60, 61, 53caovdilem 6492 . . . . . 6  |-  ( ( ( y  .R  z
)  +R  ( x  .R  w ) )  .R  u )  =  ( ( y  .R  ( z  .R  u
) )  +R  (
x  .R  ( w  .R  u ) ) )
6362oveq2i 6293 . . . . 5  |-  ( -1R 
.R  ( ( ( y  .R  z )  +R  ( x  .R  w ) )  .R  u ) )  =  ( -1R  .R  (
( y  .R  (
z  .R  u )
)  +R  ( x  .R  ( w  .R  u ) ) ) )
64 distrsr 9464 . . . . . 6  |-  ( -1R 
.R  ( ( y  .R  ( z  .R  u ) )  +R  ( x  .R  (
w  .R  u )
) ) )  =  ( ( -1R  .R  ( y  .R  (
z  .R  u )
) )  +R  ( -1R  .R  ( x  .R  ( w  .R  u
) ) ) )
65 ovex 6307 . . . . . . . 8  |-  ( w  .R  u )  e. 
_V
6647, 46, 65, 49, 53caov12 6485 . . . . . . 7  |-  ( -1R 
.R  ( x  .R  ( w  .R  u
) ) )  =  ( x  .R  ( -1R  .R  ( w  .R  u ) ) )
6766oveq2i 6293 . . . . . 6  |-  ( ( -1R  .R  ( y  .R  ( z  .R  u ) ) )  +R  ( -1R  .R  ( x  .R  (
w  .R  u )
) ) )  =  ( ( -1R  .R  ( y  .R  (
z  .R  u )
) )  +R  (
x  .R  ( -1R  .R  ( w  .R  u
) ) ) )
6864, 67eqtri 2496 . . . . 5  |-  ( -1R 
.R  ( ( y  .R  ( z  .R  u ) )  +R  ( x  .R  (
w  .R  u )
) ) )  =  ( ( -1R  .R  ( y  .R  (
z  .R  u )
) )  +R  (
x  .R  ( -1R  .R  ( w  .R  u
) ) ) )
6963, 68eqtri 2496 . . . 4  |-  ( -1R 
.R  ( ( ( y  .R  z )  +R  ( x  .R  w ) )  .R  u ) )  =  ( ( -1R  .R  ( y  .R  (
z  .R  u )
) )  +R  (
x  .R  ( -1R  .R  ( w  .R  u
) ) ) )
7058, 69oveq12i 6294 . . 3  |-  ( ( ( ( x  .R  z )  +R  ( -1R  .R  ( y  .R  w ) ) )  .R  v )  +R  ( -1R  .R  (
( ( y  .R  z )  +R  (
x  .R  w )
)  .R  u )
) )  =  ( ( ( x  .R  ( z  .R  v
) )  +R  ( -1R  .R  ( y  .R  ( w  .R  v
) ) ) )  +R  ( ( -1R 
.R  ( y  .R  ( z  .R  u
) ) )  +R  ( x  .R  ( -1R  .R  ( w  .R  u ) ) ) ) )
7139, 45, 703eqtr4ri 2507 . 2  |-  ( ( ( ( x  .R  z )  +R  ( -1R  .R  ( y  .R  w ) ) )  .R  v )  +R  ( -1R  .R  (
( ( y  .R  z )  +R  (
x  .R  w )
)  .R  u )
) )  =  ( ( x  .R  (
( z  .R  v
)  +R  ( -1R 
.R  ( w  .R  u ) ) ) )  +R  ( -1R 
.R  ( y  .R  ( ( w  .R  v )  +R  (
z  .R  u )
) ) ) )
72 ovex 6307 . . . 4  |-  ( y  .R  ( z  .R  v ) )  e. 
_V
73 ovex 6307 . . . 4  |-  ( y  .R  ( -1R  .R  ( w  .R  u
) ) )  e. 
_V
74 ovex 6307 . . . 4  |-  ( x  .R  ( w  .R  v ) )  e. 
_V
75 ovex 6307 . . . 4  |-  ( x  .R  ( z  .R  u ) )  e. 
_V
7672, 73, 74, 36, 37, 75caov42 6490 . . 3  |-  ( ( ( y  .R  (
z  .R  v )
)  +R  ( y  .R  ( -1R  .R  ( w  .R  u
) ) ) )  +R  ( ( x  .R  ( w  .R  v ) )  +R  ( x  .R  (
z  .R  u )
) ) )  =  ( ( ( y  .R  ( z  .R  v ) )  +R  ( x  .R  (
w  .R  v )
) )  +R  (
( x  .R  (
z  .R  u )
)  +R  ( y  .R  ( -1R  .R  ( w  .R  u
) ) ) ) )
77 distrsr 9464 . . . 4  |-  ( y  .R  ( ( z  .R  v )  +R  ( -1R  .R  (
w  .R  u )
) ) )  =  ( ( y  .R  ( z  .R  v
) )  +R  (
y  .R  ( -1R  .R  ( w  .R  u
) ) ) )
78 distrsr 9464 . . . 4  |-  ( x  .R  ( ( w  .R  v )  +R  ( z  .R  u
) ) )  =  ( ( x  .R  ( w  .R  v
) )  +R  (
x  .R  ( z  .R  u ) ) )
7977, 78oveq12i 6294 . . 3  |-  ( ( y  .R  ( ( z  .R  v )  +R  ( -1R  .R  ( w  .R  u
) ) ) )  +R  ( x  .R  ( ( w  .R  v )  +R  (
z  .R  u )
) ) )  =  ( ( ( y  .R  ( z  .R  v ) )  +R  ( y  .R  ( -1R  .R  ( w  .R  u ) ) ) )  +R  ( ( x  .R  ( w  .R  v ) )  +R  ( x  .R  ( z  .R  u
) ) ) )
8059, 46, 48, 49, 50, 60, 52, 53caovdilem 6492 . . . 4  |-  ( ( ( y  .R  z
)  +R  ( x  .R  w ) )  .R  v )  =  ( ( y  .R  ( z  .R  v
) )  +R  (
x  .R  ( w  .R  v ) ) )
8146, 47, 48, 49, 50, 51, 61, 53caovdilem 6492 . . . . 5  |-  ( ( ( x  .R  z
)  +R  ( -1R 
.R  ( y  .R  w ) ) )  .R  u )  =  ( ( x  .R  ( z  .R  u
) )  +R  ( -1R  .R  ( ( y  .R  w )  .R  u ) ) )
82 mulasssr 9463 . . . . . . . 8  |-  ( ( y  .R  w )  .R  u )  =  ( y  .R  (
w  .R  u )
)
8382oveq2i 6293 . . . . . . 7  |-  ( -1R 
.R  ( ( y  .R  w )  .R  u ) )  =  ( -1R  .R  (
y  .R  ( w  .R  u ) ) )
8447, 59, 65, 49, 53caov12 6485 . . . . . . 7  |-  ( -1R 
.R  ( y  .R  ( w  .R  u
) ) )  =  ( y  .R  ( -1R  .R  ( w  .R  u ) ) )
8583, 84eqtri 2496 . . . . . 6  |-  ( -1R 
.R  ( ( y  .R  w )  .R  u ) )  =  ( y  .R  ( -1R  .R  ( w  .R  u ) ) )
8685oveq2i 6293 . . . . 5  |-  ( ( x  .R  ( z  .R  u ) )  +R  ( -1R  .R  ( ( y  .R  w )  .R  u
) ) )  =  ( ( x  .R  ( z  .R  u
) )  +R  (
y  .R  ( -1R  .R  ( w  .R  u
) ) ) )
8781, 86eqtri 2496 . . . 4  |-  ( ( ( x  .R  z
)  +R  ( -1R 
.R  ( y  .R  w ) ) )  .R  u )  =  ( ( x  .R  ( z  .R  u
) )  +R  (
y  .R  ( -1R  .R  ( w  .R  u
) ) ) )
8880, 87oveq12i 6294 . . 3  |-  ( ( ( ( y  .R  z )  +R  (
x  .R  w )
)  .R  v )  +R  ( ( ( x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) )  .R  u
) )  =  ( ( ( y  .R  ( z  .R  v
) )  +R  (
x  .R  ( w  .R  v ) ) )  +R  ( ( x  .R  ( z  .R  u ) )  +R  ( y  .R  ( -1R  .R  ( w  .R  u ) ) ) ) )
8976, 79, 883eqtr4ri 2507 . 2  |-  ( ( ( ( y  .R  z )  +R  (
x  .R  w )
)  .R  v )  +R  ( ( ( x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) )  .R  u
) )  =  ( ( y  .R  (
( z  .R  v
)  +R  ( -1R 
.R  ( w  .R  u ) ) ) )  +R  ( x  .R  ( ( w  .R  v )  +R  ( z  .R  u
) ) ) )
901, 2, 3, 4, 5, 19, 32, 71, 89ecovass 7415 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    _E cep 4789   `'ccnv 4998  (class class class)co 6282   R.cnr 9239   -1Rcm1r 9242    +R cplr 9243    .R cmr 9244   CCcc 9486    x. cmul 9493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-omul 7132  df-er 7308  df-ec 7310  df-qs 7314  df-ni 9246  df-pli 9247  df-mi 9248  df-lti 9249  df-plpq 9282  df-mpq 9283  df-ltpq 9284  df-enq 9285  df-nq 9286  df-erq 9287  df-plq 9288  df-mq 9289  df-1nq 9290  df-rq 9291  df-ltnq 9292  df-np 9355  df-1p 9356  df-plp 9357  df-mp 9358  df-ltp 9359  df-enr 9429  df-nr 9430  df-plr 9431  df-mr 9432  df-m1r 9436  df-c 9494  df-mul 9500
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator