MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axltadd Structured version   Unicode version

Theorem axltadd 9563
Description: Ordering property of addition on reals. Axiom 20 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-ltadd 9473 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
axltadd  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  ->  ( C  +  A )  <  ( C  +  B
) ) )

Proof of Theorem axltadd
StepHypRef Expression
1 ax-pre-ltadd 9473 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( C  +  A )  <RR  ( C  +  B
) ) )
2 ltxrlt 9560 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  A 
<RR  B ) )
323adant3 1008 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  <->  A  <RR  B ) )
4 readdcl 9480 . . . . 5  |-  ( ( C  e.  RR  /\  A  e.  RR )  ->  ( C  +  A
)  e.  RR )
5 readdcl 9480 . . . . 5  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  +  B
)  e.  RR )
6 ltxrlt 9560 . . . . 5  |-  ( ( ( C  +  A
)  e.  RR  /\  ( C  +  B
)  e.  RR )  ->  ( ( C  +  A )  < 
( C  +  B
)  <->  ( C  +  A )  <RR  ( C  +  B ) ) )
74, 5, 6syl2an 477 . . . 4  |-  ( ( ( C  e.  RR  /\  A  e.  RR )  /\  ( C  e.  RR  /\  B  e.  RR ) )  -> 
( ( C  +  A )  <  ( C  +  B )  <->  ( C  +  A ) 
<RR  ( C  +  B
) ) )
873impdi 1274 . . 3  |-  ( ( C  e.  RR  /\  A  e.  RR  /\  B  e.  RR )  ->  (
( C  +  A
)  <  ( C  +  B )  <->  ( C  +  A )  <RR  ( C  +  B ) ) )
983coml 1195 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  +  A
)  <  ( C  +  B )  <->  ( C  +  A )  <RR  ( C  +  B ) ) )
101, 3, 93imtr4d 268 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  ->  ( C  +  A )  <  ( C  +  B
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    e. wcel 1758   class class class wbr 4403  (class class class)co 6203   RRcr 9396    + caddc 9400    <RR cltrr 9401    < clt 9533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-resscn 9454  ax-addrcl 9458  ax-pre-ltadd 9473
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-er 7214  df-en 7424  df-dom 7425  df-sdom 7426  df-pnf 9535  df-mnf 9536  df-ltxr 9538
This theorem is referenced by:  ltadd2  9593  ltadd2i  9620  nnge1  10463
  Copyright terms: Public domain W3C validator