MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem8 Structured version   Unicode version

Theorem axlowdimlem8 24066
Description: Lemma for axlowdim 24078. Calculate the value of  P at three. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypothesis
Ref Expression
axlowdimlem7.1  |-  P  =  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) )
Assertion
Ref Expression
axlowdimlem8  |-  ( P `
 3 )  = 
-u 1

Proof of Theorem axlowdimlem8
StepHypRef Expression
1 axlowdimlem7.1 . . 3  |-  P  =  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) )
21fveq1i 5873 . 2  |-  ( P `
 3 )  =  ( ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) `
 3 )
3 3re 10621 . . . . 5  |-  3  e.  RR
43elexi 3128 . . . 4  |-  3  e.  _V
5 negex 9830 . . . 4  |-  -u 1  e.  _V
64, 5fnsn 5647 . . 3  |-  { <. 3 ,  -u 1 >. }  Fn  { 3 }
7 c0ex 9602 . . . . 5  |-  0  e.  _V
87fconst 5777 . . . 4  |-  ( ( ( 1 ... N
)  \  { 3 } )  X.  {
0 } ) : ( ( 1 ... N )  \  {
3 } ) --> { 0 }
9 ffn 5737 . . . 4  |-  ( ( ( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) : ( ( 1 ... N )  \  { 3 } ) --> { 0 }  ->  ( ( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } )  Fn  ( ( 1 ... N )  \  { 3 } ) )
108, 9ax-mp 5 . . 3  |-  ( ( ( 1 ... N
)  \  { 3 } )  X.  {
0 } )  Fn  ( ( 1 ... N )  \  {
3 } )
11 disjdif 3905 . . . 4  |-  ( { 3 }  i^i  (
( 1 ... N
)  \  { 3 } ) )  =  (/)
124snid 4061 . . . 4  |-  3  e.  { 3 }
1311, 12pm3.2i 455 . . 3  |-  ( ( { 3 }  i^i  ( ( 1 ... N )  \  {
3 } ) )  =  (/)  /\  3  e.  { 3 } )
14 fvun1 5945 . . 3  |-  ( ( { <. 3 ,  -u
1 >. }  Fn  {
3 }  /\  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } )  Fn  ( ( 1 ... N )  \  { 3 } )  /\  ( ( { 3 }  i^i  (
( 1 ... N
)  \  { 3 } ) )  =  (/)  /\  3  e.  {
3 } ) )  ->  ( ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) `  3 )  =  ( { <. 3 ,  -u 1 >. } `  3 )
)
156, 10, 13, 14mp3an 1324 . 2  |-  ( ( { <. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) `  3 )  =  ( { <. 3 ,  -u 1 >. } `  3 )
164, 5fvsn 6105 . 2  |-  ( {
<. 3 ,  -u
1 >. } `  3
)  =  -u 1
172, 15, 163eqtri 2500 1  |-  ( P `
 3 )  = 
-u 1
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1379    e. wcel 1767    \ cdif 3478    u. cun 3479    i^i cin 3480   (/)c0 3790   {csn 4033   <.cop 4039    X. cxp 5003    Fn wfn 5589   -->wf 5590   ` cfv 5594  (class class class)co 6295   RRcr 9503   0cc0 9504   1c1 9505   -ucneg 9818   3c3 10598   ...cfz 11684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-i2m1 9572  ax-1ne0 9573  ax-rrecex 9576  ax-cnre 9577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-fv 5602  df-ov 6298  df-neg 9820  df-2 10606  df-3 10607
This theorem is referenced by:  axlowdimlem16  24074
  Copyright terms: Public domain W3C validator