MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem15 Structured version   Unicode version

Theorem axlowdimlem15 24385
Description: Lemma for axlowdim 24390. Set up a one-to-one function of points. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypothesis
Ref Expression
axlowdimlem15.1  |-  F  =  ( i  e.  ( 1 ... ( N  -  1 ) ) 
|->  if ( i  =  1 ,  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( i  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
i  +  1 ) } )  X.  {
0 } ) ) ) )
Assertion
Ref Expression
axlowdimlem15  |-  ( N  e.  ( ZZ>= `  3
)  ->  F :
( 1 ... ( N  -  1 ) ) -1-1-> ( EE `  N ) )
Distinct variable group:    i, N
Allowed substitution hint:    F( i)

Proof of Theorem axlowdimlem15
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2457 . . . . . 6  |-  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) )  =  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) )
21axlowdimlem7 24377 . . . . 5  |-  ( N  e.  ( ZZ>= `  3
)  ->  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N
)  \  { 3 } )  X.  {
0 } ) )  e.  ( EE `  N ) )
32adantr 465 . . . 4  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  i  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( { <. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) )  e.  ( EE
`  N ) )
4 eluzge3nn 11147 . . . . 5  |-  ( N  e.  ( ZZ>= `  3
)  ->  N  e.  NN )
5 eqid 2457 . . . . . 6  |-  ( {
<. ( i  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
i  +  1 ) } )  X.  {
0 } ) )  =  ( { <. ( i  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( i  +  1 ) } )  X.  { 0 } ) )
65axlowdimlem10 24380 . . . . 5  |-  ( ( N  e.  NN  /\  i  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( { <. ( i  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( i  +  1 ) } )  X.  { 0 } ) )  e.  ( EE `  N ) )
74, 6sylan 471 . . . 4  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  i  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( { <. ( i  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
i  +  1 ) } )  X.  {
0 } ) )  e.  ( EE `  N ) )
83, 7ifcld 3987 . . 3  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  i  e.  ( 1 ... ( N  -  1 ) ) )  ->  if ( i  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( i  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( i  +  1 ) } )  X.  { 0 } ) ) )  e.  ( EE `  N
) )
9 axlowdimlem15.1 . . 3  |-  F  =  ( i  e.  ( 1 ... ( N  -  1 ) ) 
|->  if ( i  =  1 ,  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( i  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
i  +  1 ) } )  X.  {
0 } ) ) ) )
108, 9fmptd 6056 . 2  |-  ( N  e.  ( ZZ>= `  3
)  ->  F :
( 1 ... ( N  -  1 ) ) --> ( EE `  N ) )
11 eqeq1 2461 . . . . . . . 8  |-  ( i  =  j  ->  (
i  =  1  <->  j  =  1 ) )
12 oveq1 6303 . . . . . . . . . . 11  |-  ( i  =  j  ->  (
i  +  1 )  =  ( j  +  1 ) )
1312opeq1d 4225 . . . . . . . . . 10  |-  ( i  =  j  ->  <. (
i  +  1 ) ,  1 >.  =  <. ( j  +  1 ) ,  1 >. )
1413sneqd 4044 . . . . . . . . 9  |-  ( i  =  j  ->  { <. ( i  +  1 ) ,  1 >. }  =  { <. ( j  +  1 ) ,  1
>. } )
1512sneqd 4044 . . . . . . . . . . 11  |-  ( i  =  j  ->  { ( i  +  1 ) }  =  { ( j  +  1 ) } )
1615difeq2d 3618 . . . . . . . . . 10  |-  ( i  =  j  ->  (
( 1 ... N
)  \  { (
i  +  1 ) } )  =  ( ( 1 ... N
)  \  { (
j  +  1 ) } ) )
1716xpeq1d 5031 . . . . . . . . 9  |-  ( i  =  j  ->  (
( ( 1 ... N )  \  {
( i  +  1 ) } )  X. 
{ 0 } )  =  ( ( ( 1 ... N ) 
\  { ( j  +  1 ) } )  X.  { 0 } ) )
1814, 17uneq12d 3655 . . . . . . . 8  |-  ( i  =  j  ->  ( { <. ( i  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
i  +  1 ) } )  X.  {
0 } ) )  =  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) ) )
1911, 18ifbieq2d 3969 . . . . . . 7  |-  ( i  =  j  ->  if ( i  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( i  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( i  +  1 ) } )  X.  { 0 } ) ) )  =  if ( j  =  1 ,  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( j  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) ) ) )
20 snex 4697 . . . . . . . . 9  |-  { <. 3 ,  -u 1 >. }  e.  _V
21 ovex 6324 . . . . . . . . . . 11  |-  ( 1 ... N )  e. 
_V
22 difexg 4604 . . . . . . . . . . 11  |-  ( ( 1 ... N )  e.  _V  ->  (
( 1 ... N
)  \  { 3 } )  e.  _V )
2321, 22ax-mp 5 . . . . . . . . . 10  |-  ( ( 1 ... N ) 
\  { 3 } )  e.  _V
24 snex 4697 . . . . . . . . . 10  |-  { 0 }  e.  _V
2523, 24xpex 6603 . . . . . . . . 9  |-  ( ( ( 1 ... N
)  \  { 3 } )  X.  {
0 } )  e. 
_V
2620, 25unex 6597 . . . . . . . 8  |-  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) )  e.  _V
27 snex 4697 . . . . . . . . 9  |-  { <. ( j  +  1 ) ,  1 >. }  e.  _V
28 difexg 4604 . . . . . . . . . . 11  |-  ( ( 1 ... N )  e.  _V  ->  (
( 1 ... N
)  \  { (
j  +  1 ) } )  e.  _V )
2921, 28ax-mp 5 . . . . . . . . . 10  |-  ( ( 1 ... N ) 
\  { ( j  +  1 ) } )  e.  _V
3029, 24xpex 6603 . . . . . . . . 9  |-  ( ( ( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } )  e. 
_V
3127, 30unex 6597 . . . . . . . 8  |-  ( {
<. ( j  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) )  e.  _V
3226, 31ifex 4013 . . . . . . 7  |-  if ( j  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) ) ,  ( { <. ( j  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) ) )  e.  _V
3319, 9, 32fvmpt 5956 . . . . . 6  |-  ( j  e.  ( 1 ... ( N  -  1 ) )  ->  ( F `  j )  =  if ( j  =  1 ,  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( j  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) ) ) )
34 eqeq1 2461 . . . . . . . 8  |-  ( i  =  k  ->  (
i  =  1  <->  k  =  1 ) )
35 oveq1 6303 . . . . . . . . . . 11  |-  ( i  =  k  ->  (
i  +  1 )  =  ( k  +  1 ) )
3635opeq1d 4225 . . . . . . . . . 10  |-  ( i  =  k  ->  <. (
i  +  1 ) ,  1 >.  =  <. ( k  +  1 ) ,  1 >. )
3736sneqd 4044 . . . . . . . . 9  |-  ( i  =  k  ->  { <. ( i  +  1 ) ,  1 >. }  =  { <. ( k  +  1 ) ,  1
>. } )
3835sneqd 4044 . . . . . . . . . . 11  |-  ( i  =  k  ->  { ( i  +  1 ) }  =  { ( k  +  1 ) } )
3938difeq2d 3618 . . . . . . . . . 10  |-  ( i  =  k  ->  (
( 1 ... N
)  \  { (
i  +  1 ) } )  =  ( ( 1 ... N
)  \  { (
k  +  1 ) } ) )
4039xpeq1d 5031 . . . . . . . . 9  |-  ( i  =  k  ->  (
( ( 1 ... N )  \  {
( i  +  1 ) } )  X. 
{ 0 } )  =  ( ( ( 1 ... N ) 
\  { ( k  +  1 ) } )  X.  { 0 } ) )
4137, 40uneq12d 3655 . . . . . . . 8  |-  ( i  =  k  ->  ( { <. ( i  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
i  +  1 ) } )  X.  {
0 } ) )  =  ( { <. ( k  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( k  +  1 ) } )  X.  { 0 } ) ) )
4234, 41ifbieq2d 3969 . . . . . . 7  |-  ( i  =  k  ->  if ( i  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( i  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( i  +  1 ) } )  X.  { 0 } ) ) )  =  if ( k  =  1 ,  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( k  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) ) )
43 snex 4697 . . . . . . . . 9  |-  { <. ( k  +  1 ) ,  1 >. }  e.  _V
44 difexg 4604 . . . . . . . . . . 11  |-  ( ( 1 ... N )  e.  _V  ->  (
( 1 ... N
)  \  { (
k  +  1 ) } )  e.  _V )
4521, 44ax-mp 5 . . . . . . . . . 10  |-  ( ( 1 ... N ) 
\  { ( k  +  1 ) } )  e.  _V
4645, 24xpex 6603 . . . . . . . . 9  |-  ( ( ( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } )  e. 
_V
4743, 46unex 6597 . . . . . . . 8  |-  ( {
<. ( k  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) )  e.  _V
4826, 47ifex 4013 . . . . . . 7  |-  if ( k  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) ) ,  ( { <. ( k  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) )  e.  _V
4942, 9, 48fvmpt 5956 . . . . . 6  |-  ( k  e.  ( 1 ... ( N  -  1 ) )  ->  ( F `  k )  =  if ( k  =  1 ,  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( k  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) ) )
5033, 49eqeqan12d 2480 . . . . 5  |-  ( ( j  e.  ( 1 ... ( N  - 
1 ) )  /\  k  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( ( F `
 j )  =  ( F `  k
)  <->  if ( j  =  1 ,  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( j  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) ) )  =  if ( k  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) ) ,  ( { <. ( k  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) ) ) )
5150adantl 466 . . . 4  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  (
j  e.  ( 1 ... ( N  - 
1 ) )  /\  k  e.  ( 1 ... ( N  - 
1 ) ) ) )  ->  ( ( F `  j )  =  ( F `  k )  <->  if (
j  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) ) ,  ( { <. ( j  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) ) )  =  if ( k  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) ) ,  ( { <. ( k  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) ) ) )
52 eqtr3 2485 . . . . . . 7  |-  ( ( j  =  1  /\  k  =  1 )  ->  j  =  k )
5352a1d 25 . . . . . 6  |-  ( ( j  =  1  /\  k  =  1 )  ->  ( if ( j  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) ) ,  ( { <. ( j  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) ) )  =  if ( k  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) ) ,  ( { <. ( k  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) )  ->  j  =  k ) )
5453a1d 25 . . . . 5  |-  ( ( j  =  1  /\  k  =  1 )  ->  ( ( N  e.  ( ZZ>= `  3
)  /\  ( j  e.  ( 1 ... ( N  -  1 ) )  /\  k  e.  ( 1 ... ( N  -  1 ) ) ) )  -> 
( if ( j  =  1 ,  ( { <. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( j  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) ) )  =  if ( k  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) ) ,  ( { <. ( k  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) )  ->  j  =  k ) ) )
55 eqid 2457 . . . . . . . . . . 11  |-  ( {
<. ( k  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) )  =  ( { <. ( k  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( k  +  1 ) } )  X.  { 0 } ) )
561, 55axlowdimlem13 24383 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  k  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) )  =/=  ( { <. ( k  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( k  +  1 ) } )  X.  { 0 } ) ) )
5756neneqd 2659 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  k  e.  ( 1 ... ( N  - 
1 ) ) )  ->  -.  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N
)  \  { 3 } )  X.  {
0 } ) )  =  ( { <. ( k  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( k  +  1 ) } )  X.  { 0 } ) ) )
5857pm2.21d 106 . . . . . . . 8  |-  ( ( N  e.  NN  /\  k  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) )  =  ( {
<. ( k  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) )  ->  j  =  k ) )
5958adantrl 715 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( j  e.  ( 1 ... ( N  -  1 ) )  /\  k  e.  ( 1 ... ( N  -  1 ) ) ) )  ->  (
( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) )  =  ( { <. ( k  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) )  ->  j  =  k ) )
604, 59sylan 471 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  (
j  e.  ( 1 ... ( N  - 
1 ) )  /\  k  e.  ( 1 ... ( N  - 
1 ) ) ) )  ->  ( ( { <. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) )  =  ( {
<. ( k  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) )  ->  j  =  k ) )
61 iftrue 3950 . . . . . . . 8  |-  ( j  =  1  ->  if ( j  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) ) )  =  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) ) )
62 iffalse 3953 . . . . . . . 8  |-  ( -.  k  =  1  ->  if ( k  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( k  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( k  +  1 ) } )  X.  { 0 } ) ) )  =  ( { <. (
k  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( k  +  1 ) } )  X.  { 0 } ) ) )
6361, 62eqeqan12d 2480 . . . . . . 7  |-  ( ( j  =  1  /\ 
-.  k  =  1 )  ->  ( if ( j  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) ) )  =  if ( k  =  1 ,  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( k  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) )  <->  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) )  =  ( { <. ( k  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( k  +  1 ) } )  X.  { 0 } ) ) ) )
6463imbi1d 317 . . . . . 6  |-  ( ( j  =  1  /\ 
-.  k  =  1 )  ->  ( ( if ( j  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) ) )  =  if ( k  =  1 ,  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( k  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) )  ->  j  =  k )  <->  ( ( { <. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) )  =  ( {
<. ( k  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) )  ->  j  =  k ) ) )
6560, 64syl5ibr 221 . . . . 5  |-  ( ( j  =  1  /\ 
-.  k  =  1 )  ->  ( ( N  e.  ( ZZ>= ` 
3 )  /\  (
j  e.  ( 1 ... ( N  - 
1 ) )  /\  k  e.  ( 1 ... ( N  - 
1 ) ) ) )  ->  ( if ( j  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) ) )  =  if ( k  =  1 ,  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( k  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) )  ->  j  =  k ) ) )
66 eqid 2457 . . . . . . . . . . . 12  |-  ( {
<. ( j  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) )  =  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) )
671, 66axlowdimlem13 24383 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  j  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) )  =/=  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) ) )
6867necomd 2728 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  j  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) )  =/=  ( { <. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) )
6968neneqd 2659 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  j  e.  ( 1 ... ( N  - 
1 ) ) )  ->  -.  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) )  =  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) )
7069pm2.21d 106 . . . . . . . 8  |-  ( ( N  e.  NN  /\  j  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( ( {
<. ( j  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) )  =  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) )  ->  j  =  k ) )
714, 70sylan 471 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  j  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( { <. (
j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) )  =  ( { <. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) )  ->  j  =  k ) )
7271adantrr 716 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  (
j  e.  ( 1 ... ( N  - 
1 ) )  /\  k  e.  ( 1 ... ( N  - 
1 ) ) ) )  ->  ( ( { <. ( j  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) )  =  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) )  ->  j  =  k ) )
73 iffalse 3953 . . . . . . . 8  |-  ( -.  j  =  1  ->  if ( j  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) ) )  =  ( { <. (
j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) ) )
74 iftrue 3950 . . . . . . . 8  |-  ( k  =  1  ->  if ( k  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( k  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( k  +  1 ) } )  X.  { 0 } ) ) )  =  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) ) )
7573, 74eqeqan12d 2480 . . . . . . 7  |-  ( ( -.  j  =  1  /\  k  =  1 )  ->  ( if ( j  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) ) )  =  if ( k  =  1 ,  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( k  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) )  <->  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) )  =  ( { <. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ) )
7675imbi1d 317 . . . . . 6  |-  ( ( -.  j  =  1  /\  k  =  1 )  ->  ( ( if ( j  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) ) )  =  if ( k  =  1 ,  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( k  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) )  ->  j  =  k )  <->  ( ( { <. ( j  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) )  =  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) )  ->  j  =  k ) ) )
7772, 76syl5ibr 221 . . . . 5  |-  ( ( -.  j  =  1  /\  k  =  1 )  ->  ( ( N  e.  ( ZZ>= ` 
3 )  /\  (
j  e.  ( 1 ... ( N  - 
1 ) )  /\  k  e.  ( 1 ... ( N  - 
1 ) ) ) )  ->  ( if ( j  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) ) )  =  if ( k  =  1 ,  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( k  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) )  ->  j  =  k ) ) )
7866, 55axlowdimlem14 24384 . . . . . . . 8  |-  ( ( N  e.  NN  /\  j  e.  ( 1 ... ( N  - 
1 ) )  /\  k  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( ( {
<. ( j  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) )  =  ( { <. ( k  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( k  +  1 ) } )  X.  { 0 } ) )  ->  j  =  k ) )
79783expb 1197 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( j  e.  ( 1 ... ( N  -  1 ) )  /\  k  e.  ( 1 ... ( N  -  1 ) ) ) )  ->  (
( { <. (
j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) )  =  ( { <. ( k  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) )  ->  j  =  k ) )
804, 79sylan 471 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  (
j  e.  ( 1 ... ( N  - 
1 ) )  /\  k  e.  ( 1 ... ( N  - 
1 ) ) ) )  ->  ( ( { <. ( j  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) )  =  ( { <. ( k  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( k  +  1 ) } )  X.  { 0 } ) )  ->  j  =  k ) )
8173, 62eqeqan12d 2480 . . . . . . 7  |-  ( ( -.  j  =  1  /\  -.  k  =  1 )  ->  ( if ( j  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) ) )  =  if ( k  =  1 ,  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( k  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) )  <->  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) )  =  ( { <. ( k  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) ) )
8281imbi1d 317 . . . . . 6  |-  ( ( -.  j  =  1  /\  -.  k  =  1 )  ->  (
( if ( j  =  1 ,  ( { <. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( j  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) ) )  =  if ( k  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) ) ,  ( { <. ( k  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) )  ->  j  =  k )  <->  ( ( { <. ( j  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) )  =  ( { <. ( k  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( k  +  1 ) } )  X.  { 0 } ) )  ->  j  =  k ) ) )
8380, 82syl5ibr 221 . . . . 5  |-  ( ( -.  j  =  1  /\  -.  k  =  1 )  ->  (
( N  e.  (
ZZ>= `  3 )  /\  ( j  e.  ( 1 ... ( N  -  1 ) )  /\  k  e.  ( 1 ... ( N  -  1 ) ) ) )  ->  ( if ( j  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) ) )  =  if ( k  =  1 ,  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( k  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) )  ->  j  =  k ) ) )
8454, 65, 77, 834cases 949 . . . 4  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  (
j  e.  ( 1 ... ( N  - 
1 ) )  /\  k  e.  ( 1 ... ( N  - 
1 ) ) ) )  ->  ( if ( j  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) ) )  =  if ( k  =  1 ,  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( k  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) )  ->  j  =  k ) )
8551, 84sylbid 215 . . 3  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  (
j  e.  ( 1 ... ( N  - 
1 ) )  /\  k  e.  ( 1 ... ( N  - 
1 ) ) ) )  ->  ( ( F `  j )  =  ( F `  k )  ->  j  =  k ) )
8685ralrimivva 2878 . 2  |-  ( N  e.  ( ZZ>= `  3
)  ->  A. j  e.  ( 1 ... ( N  -  1 ) ) A. k  e.  ( 1 ... ( N  -  1 ) ) ( ( F `
 j )  =  ( F `  k
)  ->  j  =  k ) )
87 dff13 6167 . 2  |-  ( F : ( 1 ... ( N  -  1 ) ) -1-1-> ( EE
`  N )  <->  ( F : ( 1 ... ( N  -  1 ) ) --> ( EE
`  N )  /\  A. j  e.  ( 1 ... ( N  - 
1 ) ) A. k  e.  ( 1 ... ( N  - 
1 ) ) ( ( F `  j
)  =  ( F `
 k )  -> 
j  =  k ) ) )
8810, 86, 87sylanbrc 664 1  |-  ( N  e.  ( ZZ>= `  3
)  ->  F :
( 1 ... ( N  -  1 ) ) -1-1-> ( EE `  N ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   _Vcvv 3109    \ cdif 3468    u. cun 3469   ifcif 3944   {csn 4032   <.cop 4038    |-> cmpt 4515    X. cxp 5006   -->wf 5590   -1-1->wf1 5591   ` cfv 5594  (class class class)co 6296   0cc0 9509   1c1 9510    + caddc 9512    - cmin 9824   -ucneg 9825   NNcn 10556   3c3 10607   ZZ>=cuz 11106   ...cfz 11697   EEcee 24317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-ee 24320
This theorem is referenced by:  axlowdim  24390
  Copyright terms: Public domain W3C validator