MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem10 Structured version   Unicode version

Theorem axlowdimlem10 24381
Description: Lemma for axlowdim 24391. Set up a family of points in Euclidean space. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypothesis
Ref Expression
axlowdimlem10.1  |-  Q  =  ( { <. (
I  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( I  + 
1 ) } )  X.  { 0 } ) )
Assertion
Ref Expression
axlowdimlem10  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  Q  e.  ( EE `  N ) )

Proof of Theorem axlowdimlem10
StepHypRef Expression
1 ovex 6324 . . . . . . . . 9  |-  ( I  +  1 )  e. 
_V
2 1ex 9608 . . . . . . . . 9  |-  1  e.  _V
31, 2f1osn 5859 . . . . . . . 8  |-  { <. ( I  +  1 ) ,  1 >. } : { ( I  + 
1 ) } -1-1-onto-> { 1 }
4 f1of 5822 . . . . . . . 8  |-  ( {
<. ( I  +  1 ) ,  1 >. } : { ( I  +  1 ) } -1-1-onto-> { 1 }  ->  { <. ( I  +  1 ) ,  1 >. } : { ( I  + 
1 ) } --> { 1 } )
53, 4ax-mp 5 . . . . . . 7  |-  { <. ( I  +  1 ) ,  1 >. } : { ( I  + 
1 ) } --> { 1 }
6 c0ex 9607 . . . . . . . 8  |-  0  e.  _V
76fconst 5777 . . . . . . 7  |-  ( ( ( 1 ... N
)  \  { (
I  +  1 ) } )  X.  {
0 } ) : ( ( 1 ... N )  \  {
( I  +  1 ) } ) --> { 0 }
85, 7pm3.2i 455 . . . . . 6  |-  ( {
<. ( I  +  1 ) ,  1 >. } : { ( I  +  1 ) } --> { 1 }  /\  ( ( ( 1 ... N )  \  { ( I  + 
1 ) } )  X.  { 0 } ) : ( ( 1 ... N ) 
\  { ( I  +  1 ) } ) --> { 0 } )
9 disjdif 3903 . . . . . 6  |-  ( { ( I  +  1 ) }  i^i  (
( 1 ... N
)  \  { (
I  +  1 ) } ) )  =  (/)
10 fun 5754 . . . . . 6  |-  ( ( ( { <. (
I  +  1 ) ,  1 >. } : { ( I  + 
1 ) } --> { 1 }  /\  ( ( ( 1 ... N
)  \  { (
I  +  1 ) } )  X.  {
0 } ) : ( ( 1 ... N )  \  {
( I  +  1 ) } ) --> { 0 } )  /\  ( { ( I  + 
1 ) }  i^i  ( ( 1 ... N )  \  {
( I  +  1 ) } ) )  =  (/) )  ->  ( { <. ( I  + 
1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
I  +  1 ) } )  X.  {
0 } ) ) : ( { ( I  +  1 ) }  u.  ( ( 1 ... N ) 
\  { ( I  +  1 ) } ) ) --> ( { 1 }  u.  {
0 } ) )
118, 9, 10mp2an 672 . . . . 5  |-  ( {
<. ( I  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
I  +  1 ) } )  X.  {
0 } ) ) : ( { ( I  +  1 ) }  u.  ( ( 1 ... N ) 
\  { ( I  +  1 ) } ) ) --> ( { 1 }  u.  {
0 } )
12 axlowdimlem10.1 . . . . . 6  |-  Q  =  ( { <. (
I  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( I  + 
1 ) } )  X.  { 0 } ) )
1312feq1i 5729 . . . . 5  |-  ( Q : ( { ( I  +  1 ) }  u.  ( ( 1 ... N ) 
\  { ( I  +  1 ) } ) ) --> ( { 1 }  u.  {
0 } )  <->  ( { <. ( I  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
I  +  1 ) } )  X.  {
0 } ) ) : ( { ( I  +  1 ) }  u.  ( ( 1 ... N ) 
\  { ( I  +  1 ) } ) ) --> ( { 1 }  u.  {
0 } ) )
1411, 13mpbir 209 . . . 4  |-  Q :
( { ( I  +  1 ) }  u.  ( ( 1 ... N )  \  { ( I  + 
1 ) } ) ) --> ( { 1 }  u.  { 0 } )
15 1re 9612 . . . . . 6  |-  1  e.  RR
16 snssi 4176 . . . . . 6  |-  ( 1  e.  RR  ->  { 1 }  C_  RR )
1715, 16ax-mp 5 . . . . 5  |-  { 1 }  C_  RR
18 0re 9613 . . . . . 6  |-  0  e.  RR
19 snssi 4176 . . . . . 6  |-  ( 0  e.  RR  ->  { 0 }  C_  RR )
2018, 19ax-mp 5 . . . . 5  |-  { 0 }  C_  RR
2117, 20unssi 3675 . . . 4  |-  ( { 1 }  u.  {
0 } )  C_  RR
22 fss 5745 . . . 4  |-  ( ( Q : ( { ( I  +  1 ) }  u.  (
( 1 ... N
)  \  { (
I  +  1 ) } ) ) --> ( { 1 }  u.  { 0 } )  /\  ( { 1 }  u.  { 0 } )  C_  RR )  ->  Q :
( { ( I  +  1 ) }  u.  ( ( 1 ... N )  \  { ( I  + 
1 ) } ) ) --> RR )
2314, 21, 22mp2an 672 . . 3  |-  Q :
( { ( I  +  1 ) }  u.  ( ( 1 ... N )  \  { ( I  + 
1 ) } ) ) --> RR
24 fznatpl1 11760 . . . . . 6  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( I  + 
1 )  e.  ( 1 ... N ) )
2524snssd 4177 . . . . 5  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  { ( I  +  1 ) } 
C_  ( 1 ... N ) )
26 undif 3911 . . . . 5  |-  ( { ( I  +  1 ) }  C_  (
1 ... N )  <->  ( {
( I  +  1 ) }  u.  (
( 1 ... N
)  \  { (
I  +  1 ) } ) )  =  ( 1 ... N
) )
2725, 26sylib 196 . . . 4  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( { ( I  +  1 ) }  u.  ( ( 1 ... N ) 
\  { ( I  +  1 ) } ) )  =  ( 1 ... N ) )
2827feq2d 5724 . . 3  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( Q :
( { ( I  +  1 ) }  u.  ( ( 1 ... N )  \  { ( I  + 
1 ) } ) ) --> RR  <->  Q :
( 1 ... N
) --> RR ) )
2923, 28mpbii 211 . 2  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  Q : ( 1 ... N ) --> RR )
30 elee 24324 . . 3  |-  ( N  e.  NN  ->  ( Q  e.  ( EE `  N )  <->  Q :
( 1 ... N
) --> RR ) )
3130adantr 465 . 2  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( Q  e.  ( EE `  N
)  <->  Q : ( 1 ... N ) --> RR ) )
3229, 31mpbird 232 1  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  Q  e.  ( EE `  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819    \ cdif 3468    u. cun 3469    i^i cin 3470    C_ wss 3471   (/)c0 3793   {csn 4032   <.cop 4038    X. cxp 5006   -->wf 5590   -1-1-onto->wf1o 5593   ` cfv 5594  (class class class)co 6296   RRcr 9508   0cc0 9509   1c1 9510    + caddc 9512    - cmin 9824   NNcn 10556   ...cfz 11697   EEcee 24318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-ee 24321
This theorem is referenced by:  axlowdimlem14  24385  axlowdimlem15  24386  axlowdimlem16  24387  axlowdimlem17  24388
  Copyright terms: Public domain W3C validator