MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdim1 Structured version   Unicode version

Theorem axlowdim1 23342
Description: The lower dimension axiom for one dimension. In any dimension, there are at least two distinct points. Theorem 3.13 of [Schwabhauser] p. 32, where it is derived from axlowdim2 23343. (Contributed by Scott Fenton, 22-Apr-2013.)
Assertion
Ref Expression
axlowdim1  |-  ( N  e.  NN  ->  E. x  e.  ( EE `  N
) E. y  e.  ( EE `  N
) x  =/=  y
)
Distinct variable group:    x, N, y

Proof of Theorem axlowdim1
StepHypRef Expression
1 1re 9488 . . . 4  |-  1  e.  RR
21fconst6 5700 . . 3  |-  ( ( 1 ... N )  X.  { 1 } ) : ( 1 ... N ) --> RR
3 elee 23277 . . 3  |-  ( N  e.  NN  ->  (
( ( 1 ... N )  X.  {
1 } )  e.  ( EE `  N
)  <->  ( ( 1 ... N )  X. 
{ 1 } ) : ( 1 ... N ) --> RR ) )
42, 3mpbiri 233 . 2  |-  ( N  e.  NN  ->  (
( 1 ... N
)  X.  { 1 } )  e.  ( EE `  N ) )
5 0re 9489 . . . 4  |-  0  e.  RR
65fconst6 5700 . . 3  |-  ( ( 1 ... N )  X.  { 0 } ) : ( 1 ... N ) --> RR
7 elee 23277 . . 3  |-  ( N  e.  NN  ->  (
( ( 1 ... N )  X.  {
0 } )  e.  ( EE `  N
)  <->  ( ( 1 ... N )  X. 
{ 0 } ) : ( 1 ... N ) --> RR ) )
86, 7mpbiri 233 . 2  |-  ( N  e.  NN  ->  (
( 1 ... N
)  X.  { 0 } )  e.  ( EE `  N ) )
9 ax-1ne0 9454 . . . . . . 7  |-  1  =/=  0
10 df-ne 2646 . . . . . . 7  |-  ( 1  =/=  0  <->  -.  1  =  0 )
119, 10mpbi 208 . . . . . 6  |-  -.  1  =  0
12 1ex 9484 . . . . . . 7  |-  1  e.  _V
1312sneqr 4140 . . . . . 6  |-  ( { 1 }  =  {
0 }  ->  1  =  0 )
1411, 13mto 176 . . . . 5  |-  -.  {
1 }  =  {
0 }
15 elnnuz 11000 . . . . . . . . 9  |-  ( N  e.  NN  <->  N  e.  ( ZZ>= `  1 )
)
16 eluzfz1 11561 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... N
) )
1715, 16sylbi 195 . . . . . . . 8  |-  ( N  e.  NN  ->  1  e.  ( 1 ... N
) )
18 ne0i 3743 . . . . . . . 8  |-  ( 1  e.  ( 1 ... N )  ->  (
1 ... N )  =/=  (/) )
1917, 18syl 16 . . . . . . 7  |-  ( N  e.  NN  ->  (
1 ... N )  =/=  (/) )
20 rnxp 5368 . . . . . . 7  |-  ( ( 1 ... N )  =/=  (/)  ->  ran  ( ( 1 ... N )  X.  { 1 } )  =  { 1 } )
2119, 20syl 16 . . . . . 6  |-  ( N  e.  NN  ->  ran  ( ( 1 ... N )  X.  {
1 } )  =  { 1 } )
22 rnxp 5368 . . . . . . 7  |-  ( ( 1 ... N )  =/=  (/)  ->  ran  ( ( 1 ... N )  X.  { 0 } )  =  { 0 } )
2319, 22syl 16 . . . . . 6  |-  ( N  e.  NN  ->  ran  ( ( 1 ... N )  X.  {
0 } )  =  { 0 } )
2421, 23eqeq12d 2473 . . . . 5  |-  ( N  e.  NN  ->  ( ran  ( ( 1 ... N )  X.  {
1 } )  =  ran  ( ( 1 ... N )  X. 
{ 0 } )  <->  { 1 }  =  { 0 } ) )
2514, 24mtbiri 303 . . . 4  |-  ( N  e.  NN  ->  -.  ran  ( ( 1 ... N )  X.  {
1 } )  =  ran  ( ( 1 ... N )  X. 
{ 0 } ) )
26 rneq 5165 . . . 4  |-  ( ( ( 1 ... N
)  X.  { 1 } )  =  ( ( 1 ... N
)  X.  { 0 } )  ->  ran  ( ( 1 ... N )  X.  {
1 } )  =  ran  ( ( 1 ... N )  X. 
{ 0 } ) )
2725, 26nsyl 121 . . 3  |-  ( N  e.  NN  ->  -.  ( ( 1 ... N )  X.  {
1 } )  =  ( ( 1 ... N )  X.  {
0 } ) )
2827neneqad 2652 . 2  |-  ( N  e.  NN  ->  (
( 1 ... N
)  X.  { 1 } )  =/=  (
( 1 ... N
)  X.  { 0 } ) )
29 neeq1 2729 . . 3  |-  ( x  =  ( ( 1 ... N )  X. 
{ 1 } )  ->  ( x  =/=  y  <->  ( ( 1 ... N )  X. 
{ 1 } )  =/=  y ) )
30 neeq2 2731 . . 3  |-  ( y  =  ( ( 1 ... N )  X. 
{ 0 } )  ->  ( ( ( 1 ... N )  X.  { 1 } )  =/=  y  <->  ( (
1 ... N )  X. 
{ 1 } )  =/=  ( ( 1 ... N )  X. 
{ 0 } ) ) )
3129, 30rspc2ev 3180 . 2  |-  ( ( ( ( 1 ... N )  X.  {
1 } )  e.  ( EE `  N
)  /\  ( (
1 ... N )  X. 
{ 0 } )  e.  ( EE `  N )  /\  (
( 1 ... N
)  X.  { 1 } )  =/=  (
( 1 ... N
)  X.  { 0 } ) )  ->  E. x  e.  ( EE `  N ) E. y  e.  ( EE
`  N ) x  =/=  y )
324, 8, 28, 31syl3anc 1219 1  |-  ( N  e.  NN  ->  E. x  e.  ( EE `  N
) E. y  e.  ( EE `  N
) x  =/=  y
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1370    e. wcel 1758    =/= wne 2644   E.wrex 2796   (/)c0 3737   {csn 3977    X. cxp 4938   ran crn 4941   -->wf 5514   ` cfv 5518  (class class class)co 6192   RRcr 9384   0cc0 9385   1c1 9386   NNcn 10425   ZZ>=cuz 10964   ...cfz 11540   EEcee 23271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-cnex 9441  ax-resscn 9442  ax-1cn 9443  ax-icn 9444  ax-addcl 9445  ax-addrcl 9446  ax-mulcl 9447  ax-mulrcl 9448  ax-mulcom 9449  ax-addass 9450  ax-mulass 9451  ax-distr 9452  ax-i2m1 9453  ax-1ne0 9454  ax-1rid 9455  ax-rnegex 9456  ax-rrecex 9457  ax-cnre 9458  ax-pre-lttri 9459  ax-pre-lttrn 9460  ax-pre-ltadd 9461  ax-pre-mulgt0 9462
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-riota 6153  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-om 6579  df-1st 6679  df-2nd 6680  df-recs 6934  df-rdg 6968  df-er 7203  df-map 7318  df-en 7413  df-dom 7414  df-sdom 7415  df-pnf 9523  df-mnf 9524  df-xr 9525  df-ltxr 9526  df-le 9527  df-sub 9700  df-neg 9701  df-nn 10426  df-z 10750  df-uz 10965  df-fz 11541  df-ee 23274
This theorem is referenced by:  btwndiff  28194
  Copyright terms: Public domain W3C validator