MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axio Structured version   Unicode version

Theorem axio 2397
Description: Definition of 'or' (intuitionistic logic axiom ax-io). (Contributed by Jim Kingdon, 21-May-2018.) (New usage is discouraged.)
Assertion
Ref Expression
axio  |-  ( ( ( ph  \/  ch )  ->  ps )  <->  ( ( ph  ->  ps )  /\  ( ch  ->  ps )
) )

Proof of Theorem axio
StepHypRef Expression
1 jaob 790 1  |-  ( ( ( ph  \/  ch )  ->  ps )  <->  ( ( ph  ->  ps )  /\  ( ch  ->  ps )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator