MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axinfndlem1 Structured version   Unicode version

Theorem axinfndlem1 8972
Description: Lemma for the Axiom of Infinity with no distinct variable conditions. (New usage is discouraged.) (Contributed by NM, 5-Jan-2002.)
Assertion
Ref Expression
axinfndlem1  |-  ( A. x  y  e.  z  ->  E. x ( y  e.  x  /\  A. y ( y  e.  x  ->  E. z
( y  e.  z  /\  z  e.  x
) ) ) )
Distinct variable group:    y, z

Proof of Theorem axinfndlem1
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 zfinf 8047 . . . . 5  |-  E. w
( y  e.  w  /\  A. y ( y  e.  w  ->  E. z
( y  e.  z  /\  z  e.  w
) ) )
2 nfnae 2062 . . . . . . 7  |-  F/ x  -.  A. x  x  =  y
3 nfnae 2062 . . . . . . 7  |-  F/ x  -.  A. x  x  =  z
42, 3nfan 1933 . . . . . 6  |-  F/ x
( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )
5 nfcvf 2641 . . . . . . . . 9  |-  ( -. 
A. x  x  =  y  ->  F/_ x y )
65adantr 463 . . . . . . . 8  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/_ x y )
7 nfcvd 2617 . . . . . . . 8  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/_ x w )
86, 7nfeld 2624 . . . . . . 7  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/ x  y  e.  w )
9 nfnae 2062 . . . . . . . . 9  |-  F/ y  -.  A. x  x  =  y
10 nfnae 2062 . . . . . . . . 9  |-  F/ y  -.  A. x  x  =  z
119, 10nfan 1933 . . . . . . . 8  |-  F/ y ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )
12 nfnae 2062 . . . . . . . . . . 11  |-  F/ z  -.  A. x  x  =  y
13 nfnae 2062 . . . . . . . . . . 11  |-  F/ z  -.  A. x  x  =  z
1412, 13nfan 1933 . . . . . . . . . 10  |-  F/ z ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )
15 nfcvf 2641 . . . . . . . . . . . . 13  |-  ( -. 
A. x  x  =  z  ->  F/_ x z )
1615adantl 464 . . . . . . . . . . . 12  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/_ x z )
176, 16nfeld 2624 . . . . . . . . . . 11  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/ x  y  e.  z )
1816, 7nfeld 2624 . . . . . . . . . . 11  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/ x  z  e.  w )
1917, 18nfand 1930 . . . . . . . . . 10  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/ x
( y  e.  z  /\  z  e.  w
) )
2014, 19nfexd 1957 . . . . . . . . 9  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/ x E. z ( y  e.  z  /\  z  e.  w ) )
218, 20nfimd 1922 . . . . . . . 8  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/ x
( y  e.  w  ->  E. z ( y  e.  z  /\  z  e.  w ) ) )
2211, 21nfald 1956 . . . . . . 7  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/ x A. y ( y  e.  w  ->  E. z
( y  e.  z  /\  z  e.  w
) ) )
238, 22nfand 1930 . . . . . 6  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/ x
( y  e.  w  /\  A. y ( y  e.  w  ->  E. z
( y  e.  z  /\  z  e.  w
) ) ) )
24 simpr 459 . . . . . . . . 9  |-  ( ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  w  =  x )  ->  w  =  x )
2524eleq2d 2524 . . . . . . . 8  |-  ( ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  w  =  x )  ->  (
y  e.  w  <->  y  e.  x ) )
26 nfcvd 2617 . . . . . . . . . . 11  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/_ y w )
27 nfcvf2 2642 . . . . . . . . . . . 12  |-  ( -. 
A. x  x  =  y  ->  F/_ y x )
2827adantr 463 . . . . . . . . . . 11  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/_ y x )
2926, 28nfeqd 2623 . . . . . . . . . 10  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/ y  w  =  x )
3011, 29nfan1 1932 . . . . . . . . 9  |-  F/ y ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  w  =  x )
31 nfcvd 2617 . . . . . . . . . . . . 13  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/_ z w )
32 nfcvf2 2642 . . . . . . . . . . . . . 14  |-  ( -. 
A. x  x  =  z  ->  F/_ z x )
3332adantl 464 . . . . . . . . . . . . 13  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/_ z x )
3431, 33nfeqd 2623 . . . . . . . . . . . 12  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/ z  w  =  x )
3514, 34nfan1 1932 . . . . . . . . . . 11  |-  F/ z ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  w  =  x )
36 elequ2 1828 . . . . . . . . . . . . 13  |-  ( w  =  x  ->  (
z  e.  w  <->  z  e.  x ) )
3736anbi2d 701 . . . . . . . . . . . 12  |-  ( w  =  x  ->  (
( y  e.  z  /\  z  e.  w
)  <->  ( y  e.  z  /\  z  e.  x ) ) )
3837adantl 464 . . . . . . . . . . 11  |-  ( ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  w  =  x )  ->  (
( y  e.  z  /\  z  e.  w
)  <->  ( y  e.  z  /\  z  e.  x ) ) )
3935, 38exbid 1891 . . . . . . . . . 10  |-  ( ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  w  =  x )  ->  ( E. z ( y  e.  z  /\  z  e.  w )  <->  E. z
( y  e.  z  /\  z  e.  x
) ) )
4025, 39imbi12d 318 . . . . . . . . 9  |-  ( ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  w  =  x )  ->  (
( y  e.  w  ->  E. z ( y  e.  z  /\  z  e.  w ) )  <->  ( y  e.  x  ->  E. z
( y  e.  z  /\  z  e.  x
) ) ) )
4130, 40albid 1890 . . . . . . . 8  |-  ( ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  w  =  x )  ->  ( A. y ( y  e.  w  ->  E. z
( y  e.  z  /\  z  e.  w
) )  <->  A. y
( y  e.  x  ->  E. z ( y  e.  z  /\  z  e.  x ) ) ) )
4225, 41anbi12d 708 . . . . . . 7  |-  ( ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  w  =  x )  ->  (
( y  e.  w  /\  A. y ( y  e.  w  ->  E. z
( y  e.  z  /\  z  e.  w
) ) )  <->  ( y  e.  x  /\  A. y
( y  e.  x  ->  E. z ( y  e.  z  /\  z  e.  x ) ) ) ) )
4342ex 432 . . . . . 6  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  ( w  =  x  ->  ( ( y  e.  w  /\  A. y ( y  e.  w  ->  E. z
( y  e.  z  /\  z  e.  w
) ) )  <->  ( y  e.  x  /\  A. y
( y  e.  x  ->  E. z ( y  e.  z  /\  z  e.  x ) ) ) ) ) )
444, 23, 43cbvexd 2031 . . . . 5  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  ( E. w ( y  e.  w  /\  A. y
( y  e.  w  ->  E. z ( y  e.  z  /\  z  e.  w ) ) )  <->  E. x ( y  e.  x  /\  A. y
( y  e.  x  ->  E. z ( y  e.  z  /\  z  e.  x ) ) ) ) )
451, 44mpbii 211 . . . 4  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  E. x
( y  e.  x  /\  A. y ( y  e.  x  ->  E. z
( y  e.  z  /\  z  e.  x
) ) ) )
4645a1d 25 . . 3  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  ( A. x  y  e.  z  ->  E. x ( y  e.  x  /\  A. y ( y  e.  x  ->  E. z
( y  e.  z  /\  z  e.  x
) ) ) ) )
4746ex 432 . 2  |-  ( -. 
A. x  x  =  y  ->  ( -.  A. x  x  =  z  ->  ( A. x  y  e.  z  ->  E. x ( y  e.  x  /\  A. y
( y  e.  x  ->  E. z ( y  e.  z  /\  z  e.  x ) ) ) ) ) )
48 nd1 8953 . . 3  |-  ( A. x  x  =  y  ->  -.  A. x  y  e.  z )
4948pm2.21d 106 . 2  |-  ( A. x  x  =  y  ->  ( A. x  y  e.  z  ->  E. x
( y  e.  x  /\  A. y ( y  e.  x  ->  E. z
( y  e.  z  /\  z  e.  x
) ) ) ) )
50 nd2 8954 . . 3  |-  ( A. x  x  =  z  ->  -.  A. x  y  e.  z )
5150pm2.21d 106 . 2  |-  ( A. x  x  =  z  ->  ( A. x  y  e.  z  ->  E. x
( y  e.  x  /\  A. y ( y  e.  x  ->  E. z
( y  e.  z  /\  z  e.  x
) ) ) ) )
5247, 49, 51pm2.61ii 165 1  |-  ( A. x  y  e.  z  ->  E. x ( y  e.  x  /\  A. y ( y  e.  x  ->  E. z
( y  e.  z  /\  z  e.  x
) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367   A.wal 1396   E.wex 1617   F/_wnfc 2602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676  ax-reg 8010  ax-inf 8046
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-v 3108  df-dif 3464  df-un 3466  df-nul 3784  df-sn 4017  df-pr 4019
This theorem is referenced by:  axinfnd  8973
  Copyright terms: Public domain W3C validator