MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axinf2 Structured version   Unicode version

Theorem axinf2 7845
Description: A standard version of Axiom of Infinity, expanded to primitives, derived from our version of Infinity ax-inf 7843 and Regularity ax-reg 7806.

This theorem should not be referenced in any proof. Instead, use ax-inf2 7846 below so that the ordinary uses of Regularity can be more easily identified. (New usage is discouraged.) (Contributed by NM, 3-Nov-1996.)

Assertion
Ref Expression
axinf2  |-  E. x
( E. y ( y  e.  x  /\  A. z  -.  z  e.  y )  /\  A. y ( y  e.  x  ->  E. z
( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) ) )
Distinct variable group:    x, y, z, w

Proof of Theorem axinf2
StepHypRef Expression
1 peano1 6494 . . 3  |-  (/)  e.  om
2 peano2 6495 . . . 4  |-  ( y  e.  om  ->  suc  y  e.  om )
32ax-gen 1591 . . 3  |-  A. y
( y  e.  om  ->  suc  y  e.  om )
4 zfinf 7844 . . . . . 6  |-  E. x
( y  e.  x  /\  A. y ( y  e.  x  ->  E. z
( y  e.  z  /\  z  e.  x
) ) )
54inf2 7828 . . . . 5  |-  E. x
( x  =/=  (/)  /\  x  C_ 
U. x )
65inf3 7840 . . . 4  |-  om  e.  _V
7 eleq2 2503 . . . . 5  |-  ( x  =  om  ->  ( (/) 
e.  x  <->  (/)  e.  om ) )
8 eleq2 2503 . . . . . . 7  |-  ( x  =  om  ->  (
y  e.  x  <->  y  e.  om ) )
9 eleq2 2503 . . . . . . 7  |-  ( x  =  om  ->  ( suc  y  e.  x  <->  suc  y  e.  om )
)
108, 9imbi12d 320 . . . . . 6  |-  ( x  =  om  ->  (
( y  e.  x  ->  suc  y  e.  x
)  <->  ( y  e. 
om  ->  suc  y  e.  om ) ) )
1110albidv 1679 . . . . 5  |-  ( x  =  om  ->  ( A. y ( y  e.  x  ->  suc  y  e.  x )  <->  A. y
( y  e.  om  ->  suc  y  e.  om ) ) )
127, 11anbi12d 710 . . . 4  |-  ( x  =  om  ->  (
( (/)  e.  x  /\  A. y ( y  e.  x  ->  suc  y  e.  x ) )  <->  ( (/)  e.  om  /\ 
A. y ( y  e.  om  ->  suc  y  e.  om )
) ) )
136, 12spcev 3063 . . 3  |-  ( (
(/)  e.  om  /\  A. y ( y  e. 
om  ->  suc  y  e.  om ) )  ->  E. x
( (/)  e.  x  /\  A. y ( y  e.  x  ->  suc  y  e.  x ) ) )
141, 3, 13mp2an 672 . 2  |-  E. x
( (/)  e.  x  /\  A. y ( y  e.  x  ->  suc  y  e.  x ) )
15 0el 3653 . . . . 5  |-  ( (/)  e.  x  <->  E. y  e.  x  A. z  -.  z  e.  y )
16 df-rex 2720 . . . . 5  |-  ( E. y  e.  x  A. z  -.  z  e.  y  <->  E. y ( y  e.  x  /\  A. z  -.  z  e.  y
) )
1715, 16bitri 249 . . . 4  |-  ( (/)  e.  x  <->  E. y ( y  e.  x  /\  A. z  -.  z  e.  y ) )
18 sucel 4791 . . . . . . 7  |-  ( suc  y  e.  x  <->  E. z  e.  x  A. w
( w  e.  z  <-> 
( w  e.  y  \/  w  =  y ) ) )
19 df-rex 2720 . . . . . . 7  |-  ( E. z  e.  x  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) )  <->  E. z
( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) )
2018, 19bitri 249 . . . . . 6  |-  ( suc  y  e.  x  <->  E. z
( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) )
2120imbi2i 312 . . . . 5  |-  ( ( y  e.  x  ->  suc  y  e.  x
)  <->  ( y  e.  x  ->  E. z
( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) ) )
2221albii 1610 . . . 4  |-  ( A. y ( y  e.  x  ->  suc  y  e.  x )  <->  A. y
( y  e.  x  ->  E. z ( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) ) )
2317, 22anbi12i 697 . . 3  |-  ( (
(/)  e.  x  /\  A. y ( y  e.  x  ->  suc  y  e.  x ) )  <->  ( E. y ( y  e.  x  /\  A. z  -.  z  e.  y
)  /\  A. y
( y  e.  x  ->  E. z ( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) ) ) )
2423exbii 1634 . 2  |-  ( E. x ( (/)  e.  x  /\  A. y ( y  e.  x  ->  suc  y  e.  x )
)  <->  E. x ( E. y ( y  e.  x  /\  A. z  -.  z  e.  y
)  /\  A. y
( y  e.  x  ->  E. z ( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) ) ) )
2514, 24mpbi 208 1  |-  E. x
( E. y ( y  e.  x  /\  A. z  -.  z  e.  y )  /\  A. y ( y  e.  x  ->  E. z
( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369   A.wal 1367    = wceq 1369   E.wex 1586    e. wcel 1756   E.wrex 2715   (/)c0 3636   suc csuc 4720   omcom 6475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-reg 7806  ax-inf 7843
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2719  df-rex 2720  df-reu 2721  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-om 6476  df-recs 6831  df-rdg 6865
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator