MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axicn Structured version   Unicode version

Theorem axicn 9557
Description:  _i is a complex number. Axiom 3 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-icn 9581. (Contributed by NM, 23-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axicn  |-  _i  e.  CC

Proof of Theorem axicn
StepHypRef Expression
1 0r 9487 . 2  |-  0R  e.  R.
2 1sr 9488 . 2  |-  1R  e.  R.
3 df-i 9531 . . . 4  |-  _i  =  <. 0R ,  1R >.
43eleq1i 2479 . . 3  |-  ( _i  e.  CC  <->  <. 0R ,  1R >.  e.  CC )
5 opelcn 9536 . . 3  |-  ( <. 0R ,  1R >.  e.  CC  <->  ( 0R  e.  R.  /\  1R  e.  R. ) )
64, 5bitri 249 . 2  |-  ( _i  e.  CC  <->  ( 0R  e.  R.  /\  1R  e.  R. ) )
71, 2, 6mpbir2an 921 1  |-  _i  e.  CC
Colors of variables: wff setvar class
Syntax hints:    /\ wa 367    e. wcel 1842   <.cop 3978   R.cnr 9273   0Rc0r 9274   1Rc1r 9275   CCcc 9520   _ici 9524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-inf2 8091
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-oadd 7171  df-omul 7172  df-er 7348  df-ec 7350  df-qs 7354  df-ni 9280  df-pli 9281  df-mi 9282  df-lti 9283  df-plpq 9316  df-mpq 9317  df-ltpq 9318  df-enq 9319  df-nq 9320  df-erq 9321  df-plq 9322  df-mq 9323  df-1nq 9324  df-rq 9325  df-ltnq 9326  df-np 9389  df-1p 9390  df-plp 9391  df-enr 9463  df-nr 9464  df-0r 9468  df-1r 9469  df-c 9528  df-i 9531
This theorem is referenced by:  sineq0ALT  36768
  Copyright terms: Public domain W3C validator