MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axi9 Structured version   Visualization version   Unicode version

Theorem axi9 2437
Description: Axiom of existence (intuitionistic logic axiom ax-i9). In classical logic, this is equivalent to ax-6 1815 but in intuitionistic logic it needs to be stated using the existential quantifier. (Contributed by Jim Kingdon, 31-Dec-2017.) (New usage is discouraged.)
Ref Expression
axi9  |-  E. x  x  =  y

Proof of Theorem axi9
StepHypRef Expression
1 ax6e 2104 1  |-  E. x  x  =  y
Colors of variables: wff setvar class
Syntax hints:   E.wex 1673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-12 1943  ax-13 2101
This theorem depends on definitions:  df-bi 190  df-an 377  df-ex 1674
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator