MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axi2m1 Structured version   Unicode version

Theorem axi2m1 9338
Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom 12 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 9362. (Contributed by NM, 5-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axi2m1  |-  ( ( _i  x.  _i )  +  1 )  =  0

Proof of Theorem axi2m1
StepHypRef Expression
1 0r 9259 . . . . . 6  |-  0R  e.  R.
2 1sr 9260 . . . . . 6  |-  1R  e.  R.
3 mulcnsr 9315 . . . . . 6  |-  ( ( ( 0R  e.  R.  /\ 
1R  e.  R. )  /\  ( 0R  e.  R.  /\ 
1R  e.  R. )
)  ->  ( <. 0R ,  1R >.  x.  <. 0R ,  1R >. )  =  <. ( ( 0R 
.R  0R )  +R  ( -1R  .R  ( 1R  .R  1R ) ) ) ,  ( ( 1R  .R  0R )  +R  ( 0R  .R  1R ) ) >. )
41, 2, 1, 2, 3mp4an 673 . . . . 5  |-  ( <. 0R ,  1R >.  x.  <. 0R ,  1R >. )  =  <. ( ( 0R 
.R  0R )  +R  ( -1R  .R  ( 1R  .R  1R ) ) ) ,  ( ( 1R  .R  0R )  +R  ( 0R  .R  1R ) ) >.
5 00sr 9278 . . . . . . . . 9  |-  ( 0R  e.  R.  ->  ( 0R  .R  0R )  =  0R )
61, 5ax-mp 5 . . . . . . . 8  |-  ( 0R 
.R  0R )  =  0R
7 1idsr 9277 . . . . . . . . . . 11  |-  ( 1R  e.  R.  ->  ( 1R  .R  1R )  =  1R )
82, 7ax-mp 5 . . . . . . . . . 10  |-  ( 1R 
.R  1R )  =  1R
98oveq2i 6114 . . . . . . . . 9  |-  ( -1R 
.R  ( 1R  .R  1R ) )  =  ( -1R  .R  1R )
10 m1r 9261 . . . . . . . . . 10  |-  -1R  e.  R.
11 1idsr 9277 . . . . . . . . . 10  |-  ( -1R 
e.  R.  ->  ( -1R 
.R  1R )  =  -1R )
1210, 11ax-mp 5 . . . . . . . . 9  |-  ( -1R 
.R  1R )  =  -1R
139, 12eqtri 2463 . . . . . . . 8  |-  ( -1R 
.R  ( 1R  .R  1R ) )  =  -1R
146, 13oveq12i 6115 . . . . . . 7  |-  ( ( 0R  .R  0R )  +R  ( -1R  .R  ( 1R  .R  1R )
) )  =  ( 0R  +R  -1R )
15 addcomsr 9266 . . . . . . 7  |-  ( 0R 
+R  -1R )  =  ( -1R  +R  0R )
16 0idsr 9276 . . . . . . . 8  |-  ( -1R 
e.  R.  ->  ( -1R 
+R  0R )  =  -1R )
1710, 16ax-mp 5 . . . . . . 7  |-  ( -1R 
+R  0R )  =  -1R
1814, 15, 173eqtri 2467 . . . . . 6  |-  ( ( 0R  .R  0R )  +R  ( -1R  .R  ( 1R  .R  1R )
) )  =  -1R
19 00sr 9278 . . . . . . . . 9  |-  ( 1R  e.  R.  ->  ( 1R  .R  0R )  =  0R )
202, 19ax-mp 5 . . . . . . . 8  |-  ( 1R 
.R  0R )  =  0R
21 1idsr 9277 . . . . . . . . 9  |-  ( 0R  e.  R.  ->  ( 0R  .R  1R )  =  0R )
221, 21ax-mp 5 . . . . . . . 8  |-  ( 0R 
.R  1R )  =  0R
2320, 22oveq12i 6115 . . . . . . 7  |-  ( ( 1R  .R  0R )  +R  ( 0R  .R  1R ) )  =  ( 0R  +R  0R )
24 0idsr 9276 . . . . . . . 8  |-  ( 0R  e.  R.  ->  ( 0R  +R  0R )  =  0R )
251, 24ax-mp 5 . . . . . . 7  |-  ( 0R 
+R  0R )  =  0R
2623, 25eqtri 2463 . . . . . 6  |-  ( ( 1R  .R  0R )  +R  ( 0R  .R  1R ) )  =  0R
2718, 26opeq12i 4076 . . . . 5  |-  <. (
( 0R  .R  0R )  +R  ( -1R  .R  ( 1R  .R  1R )
) ) ,  ( ( 1R  .R  0R )  +R  ( 0R  .R  1R ) ) >.  =  <. -1R
,  0R >.
284, 27eqtri 2463 . . . 4  |-  ( <. 0R ,  1R >.  x.  <. 0R ,  1R >. )  =  <. -1R ,  0R >.
2928oveq1i 6113 . . 3  |-  ( (
<. 0R ,  1R >.  x. 
<. 0R ,  1R >. )  +  <. 1R ,  0R >. )  =  ( <. -1R ,  0R >.  +  <. 1R ,  0R >. )
30 addresr 9317 . . . 4  |-  ( ( -1R  e.  R.  /\  1R  e.  R. )  -> 
( <. -1R ,  0R >.  + 
<. 1R ,  0R >. )  =  <. ( -1R  +R  1R ) ,  0R >. )
3110, 2, 30mp2an 672 . . 3  |-  ( <. -1R ,  0R >.  +  <. 1R ,  0R >. )  =  <. ( -1R  +R  1R ) ,  0R >.
32 m1p1sr 9271 . . . 4  |-  ( -1R 
+R  1R )  =  0R
3332opeq1i 4074 . . 3  |-  <. ( -1R  +R  1R ) ,  0R >.  =  <. 0R ,  0R >.
3429, 31, 333eqtri 2467 . 2  |-  ( (
<. 0R ,  1R >.  x. 
<. 0R ,  1R >. )  +  <. 1R ,  0R >. )  =  <. 0R ,  0R >.
35 df-i 9303 . . . 4  |-  _i  =  <. 0R ,  1R >.
3635, 35oveq12i 6115 . . 3  |-  ( _i  x.  _i )  =  ( <. 0R ,  1R >.  x.  <. 0R ,  1R >. )
37 df-1 9302 . . 3  |-  1  =  <. 1R ,  0R >.
3836, 37oveq12i 6115 . 2  |-  ( ( _i  x.  _i )  +  1 )  =  ( ( <. 0R ,  1R >.  x.  <. 0R ,  1R >. )  +  <. 1R ,  0R >. )
39 df-0 9301 . 2  |-  0  =  <. 0R ,  0R >.
4034, 38, 393eqtr4i 2473 1  |-  ( ( _i  x.  _i )  +  1 )  =  0
Colors of variables: wff setvar class
Syntax hints:    = wceq 1369    e. wcel 1756   <.cop 3895  (class class class)co 6103   R.cnr 9046   0Rc0r 9047   1Rc1r 9048   -1Rcm1r 9049    +R cplr 9050    .R cmr 9051   0cc0 9294   1c1 9295   _ici 9296    + caddc 9297    x. cmul 9299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-inf2 7859
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-int 4141  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-1st 6589  df-2nd 6590  df-recs 6844  df-rdg 6878  df-1o 6932  df-oadd 6936  df-omul 6937  df-er 7113  df-ec 7115  df-qs 7119  df-ni 9053  df-pli 9054  df-mi 9055  df-lti 9056  df-plpq 9089  df-mpq 9090  df-ltpq 9091  df-enq 9092  df-nq 9093  df-erq 9094  df-plq 9095  df-mq 9096  df-1nq 9097  df-rq 9098  df-ltnq 9099  df-np 9162  df-1p 9163  df-plp 9164  df-mp 9165  df-ltp 9166  df-plpr 9236  df-mpr 9237  df-enr 9238  df-nr 9239  df-plr 9240  df-mr 9241  df-0r 9243  df-1r 9244  df-m1r 9245  df-c 9300  df-0 9301  df-1 9302  df-i 9303  df-add 9305  df-mul 9306
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator