MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axi2m1 Structured version   Unicode version

Theorem axi2m1 9568
Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom 12 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 9592. (Contributed by NM, 5-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axi2m1  |-  ( ( _i  x.  _i )  +  1 )  =  0

Proof of Theorem axi2m1
StepHypRef Expression
1 0r 9489 . . . . . 6  |-  0R  e.  R.
2 1sr 9490 . . . . . 6  |-  1R  e.  R.
3 mulcnsr 9545 . . . . . 6  |-  ( ( ( 0R  e.  R.  /\ 
1R  e.  R. )  /\  ( 0R  e.  R.  /\ 
1R  e.  R. )
)  ->  ( <. 0R ,  1R >.  x.  <. 0R ,  1R >. )  =  <. ( ( 0R 
.R  0R )  +R  ( -1R  .R  ( 1R  .R  1R ) ) ) ,  ( ( 1R  .R  0R )  +R  ( 0R  .R  1R ) ) >. )
41, 2, 1, 2, 3mp4an 673 . . . . 5  |-  ( <. 0R ,  1R >.  x.  <. 0R ,  1R >. )  =  <. ( ( 0R 
.R  0R )  +R  ( -1R  .R  ( 1R  .R  1R ) ) ) ,  ( ( 1R  .R  0R )  +R  ( 0R  .R  1R ) ) >.
5 00sr 9508 . . . . . . . . 9  |-  ( 0R  e.  R.  ->  ( 0R  .R  0R )  =  0R )
61, 5ax-mp 5 . . . . . . . 8  |-  ( 0R 
.R  0R )  =  0R
7 1idsr 9507 . . . . . . . . . . 11  |-  ( 1R  e.  R.  ->  ( 1R  .R  1R )  =  1R )
82, 7ax-mp 5 . . . . . . . . . 10  |-  ( 1R 
.R  1R )  =  1R
98oveq2i 6291 . . . . . . . . 9  |-  ( -1R 
.R  ( 1R  .R  1R ) )  =  ( -1R  .R  1R )
10 m1r 9491 . . . . . . . . . 10  |-  -1R  e.  R.
11 1idsr 9507 . . . . . . . . . 10  |-  ( -1R 
e.  R.  ->  ( -1R 
.R  1R )  =  -1R )
1210, 11ax-mp 5 . . . . . . . . 9  |-  ( -1R 
.R  1R )  =  -1R
139, 12eqtri 2433 . . . . . . . 8  |-  ( -1R 
.R  ( 1R  .R  1R ) )  =  -1R
146, 13oveq12i 6292 . . . . . . 7  |-  ( ( 0R  .R  0R )  +R  ( -1R  .R  ( 1R  .R  1R )
) )  =  ( 0R  +R  -1R )
15 addcomsr 9496 . . . . . . 7  |-  ( 0R 
+R  -1R )  =  ( -1R  +R  0R )
16 0idsr 9506 . . . . . . . 8  |-  ( -1R 
e.  R.  ->  ( -1R 
+R  0R )  =  -1R )
1710, 16ax-mp 5 . . . . . . 7  |-  ( -1R 
+R  0R )  =  -1R
1814, 15, 173eqtri 2437 . . . . . 6  |-  ( ( 0R  .R  0R )  +R  ( -1R  .R  ( 1R  .R  1R )
) )  =  -1R
19 00sr 9508 . . . . . . . . 9  |-  ( 1R  e.  R.  ->  ( 1R  .R  0R )  =  0R )
202, 19ax-mp 5 . . . . . . . 8  |-  ( 1R 
.R  0R )  =  0R
21 1idsr 9507 . . . . . . . . 9  |-  ( 0R  e.  R.  ->  ( 0R  .R  1R )  =  0R )
221, 21ax-mp 5 . . . . . . . 8  |-  ( 0R 
.R  1R )  =  0R
2320, 22oveq12i 6292 . . . . . . 7  |-  ( ( 1R  .R  0R )  +R  ( 0R  .R  1R ) )  =  ( 0R  +R  0R )
24 0idsr 9506 . . . . . . . 8  |-  ( 0R  e.  R.  ->  ( 0R  +R  0R )  =  0R )
251, 24ax-mp 5 . . . . . . 7  |-  ( 0R 
+R  0R )  =  0R
2623, 25eqtri 2433 . . . . . 6  |-  ( ( 1R  .R  0R )  +R  ( 0R  .R  1R ) )  =  0R
2718, 26opeq12i 4166 . . . . 5  |-  <. (
( 0R  .R  0R )  +R  ( -1R  .R  ( 1R  .R  1R )
) ) ,  ( ( 1R  .R  0R )  +R  ( 0R  .R  1R ) ) >.  =  <. -1R
,  0R >.
284, 27eqtri 2433 . . . 4  |-  ( <. 0R ,  1R >.  x.  <. 0R ,  1R >. )  =  <. -1R ,  0R >.
2928oveq1i 6290 . . 3  |-  ( (
<. 0R ,  1R >.  x. 
<. 0R ,  1R >. )  +  <. 1R ,  0R >. )  =  ( <. -1R ,  0R >.  +  <. 1R ,  0R >. )
30 addresr 9547 . . . 4  |-  ( ( -1R  e.  R.  /\  1R  e.  R. )  -> 
( <. -1R ,  0R >.  + 
<. 1R ,  0R >. )  =  <. ( -1R  +R  1R ) ,  0R >. )
3110, 2, 30mp2an 672 . . 3  |-  ( <. -1R ,  0R >.  +  <. 1R ,  0R >. )  =  <. ( -1R  +R  1R ) ,  0R >.
32 m1p1sr 9501 . . . 4  |-  ( -1R 
+R  1R )  =  0R
3332opeq1i 4164 . . 3  |-  <. ( -1R  +R  1R ) ,  0R >.  =  <. 0R ,  0R >.
3429, 31, 333eqtri 2437 . 2  |-  ( (
<. 0R ,  1R >.  x. 
<. 0R ,  1R >. )  +  <. 1R ,  0R >. )  =  <. 0R ,  0R >.
35 df-i 9533 . . . 4  |-  _i  =  <. 0R ,  1R >.
3635, 35oveq12i 6292 . . 3  |-  ( _i  x.  _i )  =  ( <. 0R ,  1R >.  x.  <. 0R ,  1R >. )
37 df-1 9532 . . 3  |-  1  =  <. 1R ,  0R >.
3836, 37oveq12i 6292 . 2  |-  ( ( _i  x.  _i )  +  1 )  =  ( ( <. 0R ,  1R >.  x.  <. 0R ,  1R >. )  +  <. 1R ,  0R >. )
39 df-0 9531 . 2  |-  0  =  <. 0R ,  0R >.
4034, 38, 393eqtr4i 2443 1  |-  ( ( _i  x.  _i )  +  1 )  =  0
Colors of variables: wff setvar class
Syntax hints:    = wceq 1407    e. wcel 1844   <.cop 3980  (class class class)co 6280   R.cnr 9275   0Rc0r 9276   1Rc1r 9277   -1Rcm1r 9278    +R cplr 9279    .R cmr 9280   0cc0 9524   1c1 9525   _ici 9526    + caddc 9527    x. cmul 9529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-inf2 8093
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-uni 4194  df-int 4230  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-pred 5369  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-om 6686  df-1st 6786  df-2nd 6787  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-1o 7169  df-oadd 7173  df-omul 7174  df-er 7350  df-ec 7352  df-qs 7356  df-ni 9282  df-pli 9283  df-mi 9284  df-lti 9285  df-plpq 9318  df-mpq 9319  df-ltpq 9320  df-enq 9321  df-nq 9322  df-erq 9323  df-plq 9324  df-mq 9325  df-1nq 9326  df-rq 9327  df-ltnq 9328  df-np 9391  df-1p 9392  df-plp 9393  df-mp 9394  df-ltp 9395  df-enr 9465  df-nr 9466  df-plr 9467  df-mr 9468  df-0r 9470  df-1r 9471  df-m1r 9472  df-c 9530  df-0 9531  df-1 9532  df-i 9533  df-add 9535  df-mul 9536
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator