MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axi10 Structured version   Visualization version   Unicode version

Theorem axi10 2428
Description: Axiom of Quantifier Substitution (intuitionistic logic axiom ax-10). This is just axc11n 2143 by another name. (Contributed by Jim Kingdon, 31-Dec-2017.) (New usage is discouraged.)
Assertion
Ref Expression
axi10  |-  ( A. x  x  =  y  ->  A. y  y  =  x )

Proof of Theorem axi10
StepHypRef Expression
1 axc11n 2143 1  |-  ( A. x  x  =  y  ->  A. y  y  =  x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-10 1915  ax-12 1933  ax-13 2091
This theorem depends on definitions:  df-bi 189  df-an 373  df-ex 1664  df-nf 1668
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator