![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > axhilex-zf | Structured version Visualization version Unicode version |
Description: Derive axiom ax-hilex 26664 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axhil.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
axhil.2 |
![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
axhilex-zf |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-hba 26634 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | hlex 26562 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1671 ax-4 1684 ax-5 1760 ax-6 1807 ax-7 1853 ax-10 1917 ax-11 1922 ax-12 1935 ax-13 2093 ax-ext 2433 ax-nul 4537 |
This theorem depends on definitions: df-bi 189 df-or 372 df-an 373 df-tru 1449 df-ex 1666 df-nf 1670 df-sb 1800 df-eu 2305 df-clab 2440 df-cleq 2446 df-clel 2449 df-nfc 2583 df-ne 2626 df-ral 2744 df-rex 2745 df-v 3049 df-sbc 3270 df-dif 3409 df-un 3411 df-in 3413 df-ss 3420 df-nul 3734 df-sn 3971 df-pr 3973 df-uni 4202 df-iota 5549 df-fv 5593 df-hba 26634 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |