MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axgroth6 Structured version   Visualization version   Unicode version

Theorem axgroth6 9271
Description: The Tarski-Grothendieck axiom using abbreviations. This version is called Tarski's axiom: given a set  x, there exists a set  y containing  x, the subsets of the members of  y, the power sets of the members of  y, and the subsets of  y of cardinality less than that of  y. (Contributed by NM, 21-Jun-2009.)
Assertion
Ref Expression
axgroth6  |-  E. y
( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  ~P z  e.  y )  /\  A. z  e.  ~P  y
( z  ~<  y  ->  z  e.  y ) )
Distinct variable group:    x, y, z

Proof of Theorem axgroth6
Dummy variables  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axgroth5 9267 . 2  |-  E. y
( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w )  /\  A. z  e.  ~P  y
( z  ~~  y  \/  z  e.  y
) )
2 biid 244 . . . 4  |-  ( x  e.  y  <->  x  e.  y )
3 pweq 3945 . . . . . . . . 9  |-  ( z  =  v  ->  ~P z  =  ~P v
)
43sseq1d 3445 . . . . . . . 8  |-  ( z  =  v  ->  ( ~P z  C_  y  <->  ~P v  C_  y ) )
54cbvralv 3005 . . . . . . 7  |-  ( A. z  e.  y  ~P z  C_  y  <->  A. v  e.  y  ~P v  C_  y )
6 ssid 3437 . . . . . . . . . 10  |-  ~P z  C_ 
~P z
7 sseq2 3440 . . . . . . . . . . 11  |-  ( w  =  ~P z  -> 
( ~P z  C_  w 
<->  ~P z  C_  ~P z ) )
87rspcev 3136 . . . . . . . . . 10  |-  ( ( ~P z  e.  y  /\  ~P z  C_  ~P z )  ->  E. w  e.  y  ~P z  C_  w )
96, 8mpan2 685 . . . . . . . . 9  |-  ( ~P z  e.  y  ->  E. w  e.  y  ~P z  C_  w )
10 pweq 3945 . . . . . . . . . . . . 13  |-  ( v  =  w  ->  ~P v  =  ~P w
)
1110sseq1d 3445 . . . . . . . . . . . 12  |-  ( v  =  w  ->  ( ~P v  C_  y  <->  ~P w  C_  y ) )
1211rspccv 3133 . . . . . . . . . . 11  |-  ( A. v  e.  y  ~P v  C_  y  ->  (
w  e.  y  ->  ~P w  C_  y ) )
13 pwss 3957 . . . . . . . . . . . 12  |-  ( ~P w  C_  y  <->  A. v
( v  C_  w  ->  v  e.  y ) )
14 vex 3034 . . . . . . . . . . . . . 14  |-  z  e. 
_V
1514pwex 4584 . . . . . . . . . . . . 13  |-  ~P z  e.  _V
16 sseq1 3439 . . . . . . . . . . . . . 14  |-  ( v  =  ~P z  -> 
( v  C_  w  <->  ~P z  C_  w )
)
17 eleq1 2537 . . . . . . . . . . . . . 14  |-  ( v  =  ~P z  -> 
( v  e.  y  <->  ~P z  e.  y
) )
1816, 17imbi12d 327 . . . . . . . . . . . . 13  |-  ( v  =  ~P z  -> 
( ( v  C_  w  ->  v  e.  y )  <->  ( ~P z  C_  w  ->  ~P z  e.  y ) ) )
1915, 18spcv 3126 . . . . . . . . . . . 12  |-  ( A. v ( v  C_  w  ->  v  e.  y )  ->  ( ~P z  C_  w  ->  ~P z  e.  y )
)
2013, 19sylbi 200 . . . . . . . . . . 11  |-  ( ~P w  C_  y  ->  ( ~P z  C_  w  ->  ~P z  e.  y ) )
2112, 20syl6 33 . . . . . . . . . 10  |-  ( A. v  e.  y  ~P v  C_  y  ->  (
w  e.  y  -> 
( ~P z  C_  w  ->  ~P z  e.  y ) ) )
2221rexlimdv 2870 . . . . . . . . 9  |-  ( A. v  e.  y  ~P v  C_  y  ->  ( E. w  e.  y  ~P z  C_  w  ->  ~P z  e.  y
) )
239, 22impbid2 209 . . . . . . . 8  |-  ( A. v  e.  y  ~P v  C_  y  ->  ( ~P z  e.  y  <->  E. w  e.  y  ~P z  C_  w )
)
2423ralbidv 2829 . . . . . . 7  |-  ( A. v  e.  y  ~P v  C_  y  ->  ( A. z  e.  y  ~P z  e.  y  <->  A. z  e.  y  E. w  e.  y  ~P z  C_  w ) )
255, 24sylbi 200 . . . . . 6  |-  ( A. z  e.  y  ~P z  C_  y  ->  ( A. z  e.  y  ~P z  e.  y  <->  A. z  e.  y  E. w  e.  y  ~P z  C_  w ) )
2625pm5.32i 649 . . . . 5  |-  ( ( A. z  e.  y  ~P z  C_  y  /\  A. z  e.  y  ~P z  e.  y )  <->  ( A. z  e.  y  ~P z  C_  y  /\  A. z  e.  y  E. w  e.  y  ~P z  C_  w ) )
27 r19.26 2904 . . . . 5  |-  ( A. z  e.  y  ( ~P z  C_  y  /\  ~P z  e.  y
)  <->  ( A. z  e.  y  ~P z  C_  y  /\  A. z  e.  y  ~P z  e.  y ) )
28 r19.26 2904 . . . . 5  |-  ( A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w )  <->  ( A. z  e.  y  ~P z  C_  y  /\  A. z  e.  y  E. w  e.  y  ~P z  C_  w
) )
2926, 27, 283bitr4i 285 . . . 4  |-  ( A. z  e.  y  ( ~P z  C_  y  /\  ~P z  e.  y
)  <->  A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w ) )
30 selpw 3949 . . . . . 6  |-  ( z  e.  ~P y  <->  z  C_  y )
31 impexp 453 . . . . . . . . 9  |-  ( ( ( z  C_  y  /\  z  ~<_  y )  ->  ( -.  z  ~~  y  ->  z  e.  y ) )  <->  ( z  C_  y  ->  ( z  ~<_  y  ->  ( -.  z  ~~  y  ->  z  e.  y ) ) ) )
32 vex 3034 . . . . . . . . . . . 12  |-  y  e. 
_V
33 ssdomg 7633 . . . . . . . . . . . 12  |-  ( y  e.  _V  ->  (
z  C_  y  ->  z  ~<_  y ) )
3432, 33ax-mp 5 . . . . . . . . . . 11  |-  ( z 
C_  y  ->  z  ~<_  y )
3534pm4.71i 644 . . . . . . . . . 10  |-  ( z 
C_  y  <->  ( z  C_  y  /\  z  ~<_  y ) )
3635imbi1i 332 . . . . . . . . 9  |-  ( ( z  C_  y  ->  ( -.  z  ~~  y  ->  z  e.  y ) )  <->  ( ( z 
C_  y  /\  z  ~<_  y )  ->  ( -.  z  ~~  y  -> 
z  e.  y ) ) )
37 brsdom 7610 . . . . . . . . . . . 12  |-  ( z 
~<  y  <->  ( z  ~<_  y  /\  -.  z  ~~  y ) )
3837imbi1i 332 . . . . . . . . . . 11  |-  ( ( z  ~<  y  ->  z  e.  y )  <->  ( (
z  ~<_  y  /\  -.  z  ~~  y )  -> 
z  e.  y ) )
39 impexp 453 . . . . . . . . . . 11  |-  ( ( ( z  ~<_  y  /\  -.  z  ~~  y )  ->  z  e.  y )  <->  ( z  ~<_  y  ->  ( -.  z  ~~  y  ->  z  e.  y ) ) )
4038, 39bitri 257 . . . . . . . . . 10  |-  ( ( z  ~<  y  ->  z  e.  y )  <->  ( z  ~<_  y  ->  ( -.  z  ~~  y  ->  z  e.  y ) ) )
4140imbi2i 319 . . . . . . . . 9  |-  ( ( z  C_  y  ->  ( z  ~<  y  ->  z  e.  y ) )  <-> 
( z  C_  y  ->  ( z  ~<_  y  -> 
( -.  z  ~~  y  ->  z  e.  y ) ) ) )
4231, 36, 413bitr4ri 286 . . . . . . . 8  |-  ( ( z  C_  y  ->  ( z  ~<  y  ->  z  e.  y ) )  <-> 
( z  C_  y  ->  ( -.  z  ~~  y  ->  z  e.  y ) ) )
4342pm5.74ri 254 . . . . . . 7  |-  ( z 
C_  y  ->  (
( z  ~<  y  ->  z  e.  y )  <-> 
( -.  z  ~~  y  ->  z  e.  y ) ) )
44 pm4.64 379 . . . . . . 7  |-  ( ( -.  z  ~~  y  ->  z  e.  y )  <-> 
( z  ~~  y  \/  z  e.  y
) )
4543, 44syl6bb 269 . . . . . 6  |-  ( z 
C_  y  ->  (
( z  ~<  y  ->  z  e.  y )  <-> 
( z  ~~  y  \/  z  e.  y
) ) )
4630, 45sylbi 200 . . . . 5  |-  ( z  e.  ~P y  -> 
( ( z  ~< 
y  ->  z  e.  y )  <->  ( z  ~~  y  \/  z  e.  y ) ) )
4746ralbiia 2822 . . . 4  |-  ( A. z  e.  ~P  y
( z  ~<  y  ->  z  e.  y )  <->  A. z  e.  ~P  y ( z  ~~  y  \/  z  e.  y ) )
482, 29, 473anbi123i 1219 . . 3  |-  ( ( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  ~P z  e.  y )  /\  A. z  e.  ~P  y ( z 
~<  y  ->  z  e.  y ) )  <->  ( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w )  /\  A. z  e.  ~P  y
( z  ~~  y  \/  z  e.  y
) ) )
4948exbii 1726 . 2  |-  ( E. y ( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  ~P z  e.  y )  /\  A. z  e.  ~P  y ( z  ~< 
y  ->  z  e.  y ) )  <->  E. y
( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w )  /\  A. z  e.  ~P  y
( z  ~~  y  \/  z  e.  y
) ) )
501, 49mpbir 214 1  |-  E. y
( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  ~P z  e.  y )  /\  A. z  e.  ~P  y
( z  ~<  y  ->  z  e.  y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    /\ w3a 1007   A.wal 1450    = wceq 1452   E.wex 1671    e. wcel 1904   A.wral 2756   E.wrex 2757   _Vcvv 3031    C_ wss 3390   ~Pcpw 3942   class class class wbr 4395    ~~ cen 7584    ~<_ cdom 7585    ~< csdm 7586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-groth 9266
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-dom 7589  df-sdom 7590
This theorem is referenced by:  grothomex  9272  grothac  9273
  Copyright terms: Public domain W3C validator