MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axgroth3 Structured version   Unicode version

Theorem axgroth3 9245
Description: Alternate version of the Tarski-Grothendieck Axiom. ax-cc 8854 is used to derive this version. (Contributed by NM, 26-Mar-2007.)
Assertion
Ref Expression
axgroth3  |-  E. y
( x  e.  y  /\  A. z  e.  y  ( A. w
( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w ) )  /\  A. z ( z  C_  y  ->  ( ( y  \  z
)  ~<_  z  \/  z  e.  y ) ) )
Distinct variable group:    x, y, z, w, v

Proof of Theorem axgroth3
StepHypRef Expression
1 axgroth2 9239 . 2  |-  E. y
( x  e.  y  /\  A. z  e.  y  ( A. w
( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w ) )  /\  A. z ( z  C_  y  ->  ( y  ~<_  z  \/  z  e.  y ) ) )
2 ssid 3480 . . . . . . . . . . . 12  |-  z  C_  z
3 sseq1 3482 . . . . . . . . . . . . . 14  |-  ( v  =  z  ->  (
v  C_  z  <->  z  C_  z ) )
4 elequ1 1870 . . . . . . . . . . . . . 14  |-  ( v  =  z  ->  (
v  e.  w  <->  z  e.  w ) )
53, 4imbi12d 321 . . . . . . . . . . . . 13  |-  ( v  =  z  ->  (
( v  C_  z  ->  v  e.  w )  <-> 
( z  C_  z  ->  z  e.  w ) ) )
65spv 2064 . . . . . . . . . . . 12  |-  ( A. v ( v  C_  z  ->  v  e.  w
)  ->  ( z  C_  z  ->  z  e.  w ) )
72, 6mpi 21 . . . . . . . . . . 11  |-  ( A. v ( v  C_  z  ->  v  e.  w
)  ->  z  e.  w )
87reximi 2891 . . . . . . . . . 10  |-  ( E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w
)  ->  E. w  e.  y  z  e.  w )
9 eluni2 4217 . . . . . . . . . 10  |-  ( z  e.  U. y  <->  E. w  e.  y  z  e.  w )
108, 9sylibr 215 . . . . . . . . 9  |-  ( E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w
)  ->  z  e.  U. y )
1110adantl 467 . . . . . . . 8  |-  ( ( A. w ( w 
C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w
) )  ->  z  e.  U. y )
1211ralimi 2816 . . . . . . 7  |-  ( A. z  e.  y  ( A. w ( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v
( v  C_  z  ->  v  e.  w ) )  ->  A. z  e.  y  z  e.  U. y )
13 dfss3 3451 . . . . . . 7  |-  ( y 
C_  U. y  <->  A. z  e.  y  z  e.  U. y )
1412, 13sylibr 215 . . . . . 6  |-  ( A. z  e.  y  ( A. w ( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v
( v  C_  z  ->  v  e.  w ) )  ->  y  C_  U. y )
15 ne0i 3764 . . . . . . . . . . 11  |-  ( x  e.  y  ->  y  =/=  (/) )
16 vex 3081 . . . . . . . . . . . 12  |-  y  e. 
_V
1716dominf 8864 . . . . . . . . . . 11  |-  ( ( y  =/=  (/)  /\  y  C_ 
U. y )  ->  om 
~<_  y )
1815, 17sylan 473 . . . . . . . . . 10  |-  ( ( x  e.  y  /\  y  C_  U. y )  ->  om  ~<_  y )
19 grothac 9244 . . . . . . . . . . . 12  |-  dom  card  =  _V
2016, 19eleqtrri 2507 . . . . . . . . . . 11  |-  y  e. 
dom  card
21 vex 3081 . . . . . . . . . . . 12  |-  z  e. 
_V
2221, 19eleqtrri 2507 . . . . . . . . . . 11  |-  z  e. 
dom  card
23 infdif2 8629 . . . . . . . . . . 11  |-  ( ( y  e.  dom  card  /\  z  e.  dom  card  /\ 
om  ~<_  y )  -> 
( ( y  \ 
z )  ~<_  z  <->  y  ~<_  z ) )
2420, 22, 23mp3an12 1350 . . . . . . . . . 10  |-  ( om  ~<_  y  ->  ( (
y  \  z )  ~<_  z 
<->  y  ~<_  z ) )
2518, 24syl 17 . . . . . . . . 9  |-  ( ( x  e.  y  /\  y  C_  U. y )  ->  ( ( y 
\  z )  ~<_  z  <-> 
y  ~<_  z ) )
2625orbi1d 707 . . . . . . . 8  |-  ( ( x  e.  y  /\  y  C_  U. y )  ->  ( ( ( y  \  z )  ~<_  z  \/  z  e.  y )  <->  ( y  ~<_  z  \/  z  e.  y ) ) )
2726imbi2d 317 . . . . . . 7  |-  ( ( x  e.  y  /\  y  C_  U. y )  ->  ( ( z 
C_  y  ->  (
( y  \  z
)  ~<_  z  \/  z  e.  y ) )  <->  ( z  C_  y  ->  ( y  ~<_  z  \/  z  e.  y ) ) ) )
2827albidv 1757 . . . . . 6  |-  ( ( x  e.  y  /\  y  C_  U. y )  ->  ( A. z
( z  C_  y  ->  ( ( y  \ 
z )  ~<_  z  \/  z  e.  y ) )  <->  A. z ( z 
C_  y  ->  (
y  ~<_  z  \/  z  e.  y ) ) ) )
2914, 28sylan2 476 . . . . 5  |-  ( ( x  e.  y  /\  A. z  e.  y  ( A. w ( w 
C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w
) ) )  -> 
( A. z ( z  C_  y  ->  ( ( y  \  z
)  ~<_  z  \/  z  e.  y ) )  <->  A. z
( z  C_  y  ->  ( y  ~<_  z  \/  z  e.  y ) ) ) )
3029pm5.32i 641 . . . 4  |-  ( ( ( x  e.  y  /\  A. z  e.  y  ( A. w
( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w ) ) )  /\  A. z
( z  C_  y  ->  ( ( y  \ 
z )  ~<_  z  \/  z  e.  y ) ) )  <->  ( (
x  e.  y  /\  A. z  e.  y  ( A. w ( w 
C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w
) ) )  /\  A. z ( z  C_  y  ->  ( y  ~<_  z  \/  z  e.  y ) ) ) )
31 df-3an 984 . . . 4  |-  ( ( x  e.  y  /\  A. z  e.  y  ( A. w ( w 
C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w
) )  /\  A. z ( z  C_  y  ->  ( ( y 
\  z )  ~<_  z  \/  z  e.  y ) ) )  <->  ( (
x  e.  y  /\  A. z  e.  y  ( A. w ( w 
C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w
) ) )  /\  A. z ( z  C_  y  ->  ( ( y 
\  z )  ~<_  z  \/  z  e.  y ) ) ) )
32 df-3an 984 . . . 4  |-  ( ( x  e.  y  /\  A. z  e.  y  ( A. w ( w 
C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w
) )  /\  A. z ( z  C_  y  ->  ( y  ~<_  z  \/  z  e.  y ) ) )  <->  ( (
x  e.  y  /\  A. z  e.  y  ( A. w ( w 
C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w
) ) )  /\  A. z ( z  C_  y  ->  ( y  ~<_  z  \/  z  e.  y ) ) ) )
3330, 31, 323bitr4i 280 . . 3  |-  ( ( x  e.  y  /\  A. z  e.  y  ( A. w ( w 
C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w
) )  /\  A. z ( z  C_  y  ->  ( ( y 
\  z )  ~<_  z  \/  z  e.  y ) ) )  <->  ( x  e.  y  /\  A. z  e.  y  ( A. w ( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v
( v  C_  z  ->  v  e.  w ) )  /\  A. z
( z  C_  y  ->  ( y  ~<_  z  \/  z  e.  y ) ) ) )
3433exbii 1712 . 2  |-  ( E. y ( x  e.  y  /\  A. z  e.  y  ( A. w ( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v
( v  C_  z  ->  v  e.  w ) )  /\  A. z
( z  C_  y  ->  ( ( y  \ 
z )  ~<_  z  \/  z  e.  y ) ) )  <->  E. y
( x  e.  y  /\  A. z  e.  y  ( A. w
( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w ) )  /\  A. z ( z  C_  y  ->  ( y  ~<_  z  \/  z  e.  y ) ) ) )
351, 34mpbir 212 1  |-  E. y
( x  e.  y  /\  A. z  e.  y  ( A. w
( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w ) )  /\  A. z ( z  C_  y  ->  ( ( y  \  z
)  ~<_  z  \/  z  e.  y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    /\ w3a 982   A.wal 1435   E.wex 1659    e. wcel 1867    =/= wne 2616   A.wral 2773   E.wrex 2774   _Vcvv 3078    \ cdif 3430    C_ wss 3433   (/)c0 3758   U.cuni 4213   class class class wbr 4417   dom cdm 4845   omcom 6697    ~<_ cdom 7566   cardccrd 8359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-rep 4529  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588  ax-reg 8098  ax-inf2 8137  ax-cc 8854  ax-groth 9237
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-rex 2779  df-reu 2780  df-rmo 2781  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-pss 3449  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-tp 3998  df-op 4000  df-uni 4214  df-int 4250  df-iun 4295  df-br 4418  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4756  df-id 4760  df-po 4766  df-so 4767  df-fr 4804  df-se 4805  df-we 4806  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-pred 5390  df-ord 5436  df-on 5437  df-lim 5438  df-suc 5439  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-isom 5601  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6698  df-1st 6798  df-2nd 6799  df-wrecs 7027  df-recs 7089  df-rdg 7127  df-1o 7181  df-2o 7182  df-oadd 7185  df-er 7362  df-map 7473  df-en 7569  df-dom 7570  df-sdom 7571  df-fin 7572  df-oi 8016  df-card 8363  df-cda 8587
This theorem is referenced by:  axgroth4  9246
  Copyright terms: Public domain W3C validator