Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axextprim Structured version   Unicode version

Theorem axextprim 30280
 Description: ax-ext 2408 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.)
Assertion
Ref Expression
axextprim

Proof of Theorem axextprim
StepHypRef Expression
1 axextnd 8967 . 2
2 dfbi2 632 . . . . . 6
32imbi1i 326 . . . . 5
4 impexp 447 . . . . 5
53, 4bitri 252 . . . 4
65exbii 1712 . . 3
7 df-ex 1658 . . 3
86, 7bitri 252 . 2
91, 8mpbi 211 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wb 187   wa 370  wal 1435  wex 1657 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408 This theorem depends on definitions:  df-bi 188  df-an 372  df-tru 1440  df-ex 1658  df-nf 1662  df-cleq 2421  df-clel 2424  df-nfc 2558 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator