MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdclem Structured version   Unicode version

Theorem axdclem 8900
Description: Lemma for axdc 8902. (Contributed by Mario Carneiro, 25-Jan-2013.)
Hypothesis
Ref Expression
axdclem.1  |-  F  =  ( rec ( ( y  e.  _V  |->  ( g `  { z  |  y x z } ) ) ,  s )  |`  om )
Assertion
Ref Expression
axdclem  |-  ( ( A. y  e.  ~P  dom  x ( y  =/=  (/)  ->  ( g `  y )  e.  y )  /\  ran  x  C_ 
dom  x  /\  E. z ( F `  K ) x z )  ->  ( K  e.  om  ->  ( F `  K ) x ( F `  suc  K
) ) )
Distinct variable groups:    y, F, z    y, K, z    y,
g    y, s    x, y, z
Allowed substitution hints:    F( x, g, s)    K( x, g, s)

Proof of Theorem axdclem
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 fvex 5876 . . . . . . . . 9  |-  ( F `
 K )  e. 
_V
2 vex 3116 . . . . . . . . 9  |-  z  e. 
_V
31, 2brelrn 5233 . . . . . . . 8  |-  ( ( F `  K ) x z  ->  z  e.  ran  x )
43abssi 3575 . . . . . . 7  |-  { z  |  ( F `  K ) x z }  C_  ran  x
5 sstr 3512 . . . . . . 7  |-  ( ( { z  |  ( F `  K ) x z }  C_  ran  x  /\  ran  x  C_ 
dom  x )  ->  { z  |  ( F `  K ) x z }  C_  dom  x )
64, 5mpan 670 . . . . . 6  |-  ( ran  x  C_  dom  x  ->  { z  |  ( F `  K ) x z }  C_  dom  x )
7 vex 3116 . . . . . . . 8  |-  x  e. 
_V
87dmex 6718 . . . . . . 7  |-  dom  x  e.  _V
98elpw2 4611 . . . . . 6  |-  ( { z  |  ( F `
 K ) x z }  e.  ~P dom  x  <->  { z  |  ( F `  K ) x z }  C_  dom  x )
106, 9sylibr 212 . . . . 5  |-  ( ran  x  C_  dom  x  ->  { z  |  ( F `  K ) x z }  e.  ~P dom  x )
11 neeq1 2748 . . . . . . . 8  |-  ( y  =  { z  |  ( F `  K
) x z }  ->  ( y  =/=  (/) 
<->  { z  |  ( F `  K ) x z }  =/=  (/) ) )
12 abn0 3804 . . . . . . . 8  |-  ( { z  |  ( F `
 K ) x z }  =/=  (/)  <->  E. z
( F `  K
) x z )
1311, 12syl6bb 261 . . . . . . 7  |-  ( y  =  { z  |  ( F `  K
) x z }  ->  ( y  =/=  (/) 
<->  E. z ( F `
 K ) x z ) )
14 eleq2 2540 . . . . . . . . . 10  |-  ( y  =  { z  |  ( F `  K
) x z }  ->  ( ( g `
 y )  e.  y  <->  ( g `  y )  e.  {
z  |  ( F `
 K ) x z } ) )
15 breq2 4451 . . . . . . . . . . . 12  |-  ( w  =  z  ->  (
( F `  K
) x w  <->  ( F `  K ) x z ) )
1615cbvabv 2610 . . . . . . . . . . 11  |-  { w  |  ( F `  K ) x w }  =  { z  |  ( F `  K ) x z }
1716eleq2i 2545 . . . . . . . . . 10  |-  ( ( g `  y )  e.  { w  |  ( F `  K
) x w }  <->  ( g `  y )  e.  { z  |  ( F `  K
) x z } )
1814, 17syl6bbr 263 . . . . . . . . 9  |-  ( y  =  { z  |  ( F `  K
) x z }  ->  ( ( g `
 y )  e.  y  <->  ( g `  y )  e.  {
w  |  ( F `
 K ) x w } ) )
19 fvex 5876 . . . . . . . . . 10  |-  ( g `
 y )  e. 
_V
20 breq2 4451 . . . . . . . . . 10  |-  ( w  =  ( g `  y )  ->  (
( F `  K
) x w  <->  ( F `  K ) x ( g `  y ) ) )
2119, 20elab 3250 . . . . . . . . 9  |-  ( ( g `  y )  e.  { w  |  ( F `  K
) x w }  <->  ( F `  K ) x ( g `  y ) )
2218, 21syl6bb 261 . . . . . . . 8  |-  ( y  =  { z  |  ( F `  K
) x z }  ->  ( ( g `
 y )  e.  y  <->  ( F `  K ) x ( g `  y ) ) )
23 fveq2 5866 . . . . . . . . 9  |-  ( y  =  { z  |  ( F `  K
) x z }  ->  ( g `  y )  =  ( g `  { z  |  ( F `  K ) x z } ) )
2423breq2d 4459 . . . . . . . 8  |-  ( y  =  { z  |  ( F `  K
) x z }  ->  ( ( F `
 K ) x ( g `  y
)  <->  ( F `  K ) x ( g `  { z  |  ( F `  K ) x z } ) ) )
2522, 24bitrd 253 . . . . . . 7  |-  ( y  =  { z  |  ( F `  K
) x z }  ->  ( ( g `
 y )  e.  y  <->  ( F `  K ) x ( g `  { z  |  ( F `  K ) x z } ) ) )
2613, 25imbi12d 320 . . . . . 6  |-  ( y  =  { z  |  ( F `  K
) x z }  ->  ( ( y  =/=  (/)  ->  ( g `  y )  e.  y )  <->  ( E. z
( F `  K
) x z  -> 
( F `  K
) x ( g `
 { z  |  ( F `  K
) x z } ) ) ) )
2726rspcv 3210 . . . . 5  |-  ( { z  |  ( F `
 K ) x z }  e.  ~P dom  x  ->  ( A. y  e.  ~P  dom  x
( y  =/=  (/)  ->  (
g `  y )  e.  y )  ->  ( E. z ( F `  K ) x z  ->  ( F `  K ) x ( g `  { z  |  ( F `  K ) x z } ) ) ) )
2810, 27syl 16 . . . 4  |-  ( ran  x  C_  dom  x  -> 
( A. y  e. 
~P  dom  x (
y  =/=  (/)  ->  (
g `  y )  e.  y )  ->  ( E. z ( F `  K ) x z  ->  ( F `  K ) x ( g `  { z  |  ( F `  K ) x z } ) ) ) )
2928com12 31 . . 3  |-  ( A. y  e.  ~P  dom  x
( y  =/=  (/)  ->  (
g `  y )  e.  y )  ->  ( ran  x  C_  dom  x  -> 
( E. z ( F `  K ) x z  ->  ( F `  K )
x ( g `  { z  |  ( F `  K ) x z } ) ) ) )
30293imp 1190 . 2  |-  ( ( A. y  e.  ~P  dom  x ( y  =/=  (/)  ->  ( g `  y )  e.  y )  /\  ran  x  C_ 
dom  x  /\  E. z ( F `  K ) x z )  ->  ( F `  K ) x ( g `  { z  |  ( F `  K ) x z } ) )
31 fvex 5876 . . . 4  |-  ( g `
 { z  |  ( F `  K
) x z } )  e.  _V
32 nfcv 2629 . . . . 5  |-  F/_ y
s
33 nfcv 2629 . . . . 5  |-  F/_ y K
34 nfcv 2629 . . . . 5  |-  F/_ y
( g `  {
z  |  ( F `
 K ) x z } )
35 axdclem.1 . . . . 5  |-  F  =  ( rec ( ( y  e.  _V  |->  ( g `  { z  |  y x z } ) ) ,  s )  |`  om )
36 breq1 4450 . . . . . . 7  |-  ( y  =  ( F `  K )  ->  (
y x z  <->  ( F `  K ) x z ) )
3736abbidv 2603 . . . . . 6  |-  ( y  =  ( F `  K )  ->  { z  |  y x z }  =  { z  |  ( F `  K ) x z } )
3837fveq2d 5870 . . . . 5  |-  ( y  =  ( F `  K )  ->  (
g `  { z  |  y x z } )  =  ( g `  { z  |  ( F `  K ) x z } ) )
3932, 33, 34, 35, 38frsucmpt 7104 . . . 4  |-  ( ( K  e.  om  /\  ( g `  {
z  |  ( F `
 K ) x z } )  e. 
_V )  ->  ( F `  suc  K )  =  ( g `  { z  |  ( F `  K ) x z } ) )
4031, 39mpan2 671 . . 3  |-  ( K  e.  om  ->  ( F `  suc  K )  =  ( g `  { z  |  ( F `  K ) x z } ) )
4140breq2d 4459 . 2  |-  ( K  e.  om  ->  (
( F `  K
) x ( F `
 suc  K )  <->  ( F `  K ) x ( g `  { z  |  ( F `  K ) x z } ) ) )
4230, 41syl5ibrcom 222 1  |-  ( ( A. y  e.  ~P  dom  x ( y  =/=  (/)  ->  ( g `  y )  e.  y )  /\  ran  x  C_ 
dom  x  /\  E. z ( F `  K ) x z )  ->  ( K  e.  om  ->  ( F `  K ) x ( F `  suc  K
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 973    = wceq 1379   E.wex 1596    e. wcel 1767   {cab 2452    =/= wne 2662   A.wral 2814   _Vcvv 3113    C_ wss 3476   (/)c0 3785   ~Pcpw 4010   class class class wbr 4447    |-> cmpt 4505   suc csuc 4880   dom cdm 4999   ran crn 5000    |` cres 5001   ` cfv 5588   omcom 6685   reccrdg 7076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-om 6686  df-recs 7043  df-rdg 7077
This theorem is referenced by:  axdclem2  8901
  Copyright terms: Public domain W3C validator