MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdc3lem3 Structured version   Unicode version

Theorem axdc3lem3 8823
Description: Simple substitution lemma for axdc3 8825. (Contributed by Mario Carneiro, 27-Jan-2013.)
Hypotheses
Ref Expression
axdc3lem3.1  |-  A  e. 
_V
axdc3lem3.2  |-  S  =  { s  |  E. n  e.  om  (
s : suc  n --> A  /\  ( s `  (/) )  =  C  /\  A. k  e.  n  ( s `  suc  k
)  e.  ( F `
 ( s `  k ) ) ) }
axdc3lem3.3  |-  B  e. 
_V
Assertion
Ref Expression
axdc3lem3  |-  ( B  e.  S  <->  E. m  e.  om  ( B : suc  m --> A  /\  ( B `  (/) )  =  C  /\  A. k  e.  m  ( B `  suc  k )  e.  ( F `  ( B `  k )
) ) )
Distinct variable groups:    A, m, n    A, s, n    B, k, m, n    B, s, k    C, m, n    C, s    m, F, n    F, s
Allowed substitution hints:    A( k)    C( k)    S( k, m, n, s)    F( k)

Proof of Theorem axdc3lem3
StepHypRef Expression
1 axdc3lem3.2 . . 3  |-  S  =  { s  |  E. n  e.  om  (
s : suc  n --> A  /\  ( s `  (/) )  =  C  /\  A. k  e.  n  ( s `  suc  k
)  e.  ( F `
 ( s `  k ) ) ) }
21eleq2i 2532 . 2  |-  ( B  e.  S  <->  B  e.  { s  |  E. n  e.  om  ( s : suc  n --> A  /\  ( s `  (/) )  =  C  /\  A. k  e.  n  ( s `  suc  k )  e.  ( F `  (
s `  k )
) ) } )
3 axdc3lem3.3 . . 3  |-  B  e. 
_V
4 feq1 5695 . . . . 5  |-  ( s  =  B  ->  (
s : suc  n --> A 
<->  B : suc  n --> A ) )
5 fveq1 5847 . . . . . 6  |-  ( s  =  B  ->  (
s `  (/) )  =  ( B `  (/) ) )
65eqeq1d 2456 . . . . 5  |-  ( s  =  B  ->  (
( s `  (/) )  =  C  <->  ( B `  (/) )  =  C ) )
7 fveq1 5847 . . . . . . 7  |-  ( s  =  B  ->  (
s `  suc  k )  =  ( B `  suc  k ) )
8 fveq1 5847 . . . . . . . 8  |-  ( s  =  B  ->  (
s `  k )  =  ( B `  k ) )
98fveq2d 5852 . . . . . . 7  |-  ( s  =  B  ->  ( F `  ( s `  k ) )  =  ( F `  ( B `  k )
) )
107, 9eleq12d 2536 . . . . . 6  |-  ( s  =  B  ->  (
( s `  suc  k )  e.  ( F `  ( s `
 k ) )  <-> 
( B `  suc  k )  e.  ( F `  ( B `
 k ) ) ) )
1110ralbidv 2893 . . . . 5  |-  ( s  =  B  ->  ( A. k  e.  n  ( s `  suc  k )  e.  ( F `  ( s `
 k ) )  <->  A. k  e.  n  ( B `  suc  k
)  e.  ( F `
 ( B `  k ) ) ) )
124, 6, 113anbi123d 1297 . . . 4  |-  ( s  =  B  ->  (
( s : suc  n
--> A  /\  ( s `
 (/) )  =  C  /\  A. k  e.  n  ( s `  suc  k )  e.  ( F `  ( s `
 k ) ) )  <->  ( B : suc  n --> A  /\  ( B `  (/) )  =  C  /\  A. k  e.  n  ( B `  suc  k )  e.  ( F `  ( B `  k )
) ) ) )
1312rexbidv 2965 . . 3  |-  ( s  =  B  ->  ( E. n  e.  om  ( s : suc  n
--> A  /\  ( s `
 (/) )  =  C  /\  A. k  e.  n  ( s `  suc  k )  e.  ( F `  ( s `
 k ) ) )  <->  E. n  e.  om  ( B : suc  n --> A  /\  ( B `  (/) )  =  C  /\  A. k  e.  n  ( B `  suc  k
)  e.  ( F `
 ( B `  k ) ) ) ) )
143, 13elab 3243 . 2  |-  ( B  e.  { s  |  E. n  e.  om  ( s : suc  n
--> A  /\  ( s `
 (/) )  =  C  /\  A. k  e.  n  ( s `  suc  k )  e.  ( F `  ( s `
 k ) ) ) }  <->  E. n  e.  om  ( B : suc  n --> A  /\  ( B `  (/) )  =  C  /\  A. k  e.  n  ( B `  suc  k )  e.  ( F `  ( B `  k )
) ) )
15 suceq 4932 . . . . 5  |-  ( n  =  m  ->  suc  n  =  suc  m )
1615feq2d 5700 . . . 4  |-  ( n  =  m  ->  ( B : suc  n --> A  <->  B : suc  m --> A ) )
17 raleq 3051 . . . 4  |-  ( n  =  m  ->  ( A. k  e.  n  ( B `  suc  k
)  e.  ( F `
 ( B `  k ) )  <->  A. k  e.  m  ( B `  suc  k )  e.  ( F `  ( B `  k )
) ) )
1816, 173anbi13d 1299 . . 3  |-  ( n  =  m  ->  (
( B : suc  n
--> A  /\  ( B `
 (/) )  =  C  /\  A. k  e.  n  ( B `  suc  k )  e.  ( F `  ( B `
 k ) ) )  <->  ( B : suc  m --> A  /\  ( B `  (/) )  =  C  /\  A. k  e.  m  ( B `  suc  k )  e.  ( F `  ( B `  k )
) ) ) )
1918cbvrexv 3082 . 2  |-  ( E. n  e.  om  ( B : suc  n --> A  /\  ( B `  (/) )  =  C  /\  A. k  e.  n  ( B `  suc  k )  e.  ( F `  ( B `  k )
) )  <->  E. m  e.  om  ( B : suc  m --> A  /\  ( B `  (/) )  =  C  /\  A. k  e.  m  ( B `  suc  k )  e.  ( F `  ( B `  k )
) ) )
202, 14, 193bitri 271 1  |-  ( B  e.  S  <->  E. m  e.  om  ( B : suc  m --> A  /\  ( B `  (/) )  =  C  /\  A. k  e.  m  ( B `  suc  k )  e.  ( F `  ( B `  k )
) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ w3a 971    = wceq 1398    e. wcel 1823   {cab 2439   A.wral 2804   E.wrex 2805   _Vcvv 3106   (/)c0 3783   suc csuc 4869   -->wf 5566   ` cfv 5570   omcom 6673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-suc 4873  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-fv 5578
This theorem is referenced by:  axdc3lem4  8824
  Copyright terms: Public domain W3C validator