MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdc3 Structured version   Unicode version

Theorem axdc3 8825
Description: Dependent Choice. Axiom DC1 of [Schechter] p. 149, with the addition of an initial value  C. This theorem is weaker than the Axiom of Choice but is stronger than Countable Choice. It shows the existence of a sequence whose values can only be shown to exist (but cannot be constructed explicitly) and also depend on earlier values in the sequence. (Contributed by Mario Carneiro, 27-Jan-2013.)
Hypothesis
Ref Expression
axdc3.1  |-  A  e. 
_V
Assertion
Ref Expression
axdc3  |-  ( ( C  e.  A  /\  F : A --> ( ~P A  \  { (/) } ) )  ->  E. g
( g : om --> A  /\  ( g `  (/) )  =  C  /\  A. k  e.  om  (
g `  suc  k )  e.  ( F `  ( g `  k
) ) ) )
Distinct variable groups:    A, g,
k    C, g, k    g, F, k

Proof of Theorem axdc3
Dummy variables  n  s  t  x  y 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axdc3.1 . 2  |-  A  e. 
_V
2 feq1 5695 . . . . 5  |-  ( t  =  s  ->  (
t : suc  n --> A 
<->  s : suc  n --> A ) )
3 fveq1 5847 . . . . . 6  |-  ( t  =  s  ->  (
t `  (/) )  =  ( s `  (/) ) )
43eqeq1d 2456 . . . . 5  |-  ( t  =  s  ->  (
( t `  (/) )  =  C  <->  ( s `  (/) )  =  C ) )
5 fveq1 5847 . . . . . . . 8  |-  ( t  =  s  ->  (
t `  suc  j )  =  ( s `  suc  j ) )
6 fveq1 5847 . . . . . . . . 9  |-  ( t  =  s  ->  (
t `  j )  =  ( s `  j ) )
76fveq2d 5852 . . . . . . . 8  |-  ( t  =  s  ->  ( F `  ( t `  j ) )  =  ( F `  (
s `  j )
) )
85, 7eleq12d 2536 . . . . . . 7  |-  ( t  =  s  ->  (
( t `  suc  j )  e.  ( F `  ( t `
 j ) )  <-> 
( s `  suc  j )  e.  ( F `  ( s `
 j ) ) ) )
98ralbidv 2893 . . . . . 6  |-  ( t  =  s  ->  ( A. j  e.  n  ( t `  suc  j )  e.  ( F `  ( t `
 j ) )  <->  A. j  e.  n  ( s `  suc  j )  e.  ( F `  ( s `
 j ) ) ) )
10 suceq 4932 . . . . . . . . 9  |-  ( j  =  k  ->  suc  j  =  suc  k )
1110fveq2d 5852 . . . . . . . 8  |-  ( j  =  k  ->  (
s `  suc  j )  =  ( s `  suc  k ) )
12 fveq2 5848 . . . . . . . . 9  |-  ( j  =  k  ->  (
s `  j )  =  ( s `  k ) )
1312fveq2d 5852 . . . . . . . 8  |-  ( j  =  k  ->  ( F `  ( s `  j ) )  =  ( F `  (
s `  k )
) )
1411, 13eleq12d 2536 . . . . . . 7  |-  ( j  =  k  ->  (
( s `  suc  j )  e.  ( F `  ( s `
 j ) )  <-> 
( s `  suc  k )  e.  ( F `  ( s `
 k ) ) ) )
1514cbvralv 3081 . . . . . 6  |-  ( A. j  e.  n  (
s `  suc  j )  e.  ( F `  ( s `  j
) )  <->  A. k  e.  n  ( s `  suc  k )  e.  ( F `  (
s `  k )
) )
169, 15syl6bb 261 . . . . 5  |-  ( t  =  s  ->  ( A. j  e.  n  ( t `  suc  j )  e.  ( F `  ( t `
 j ) )  <->  A. k  e.  n  ( s `  suc  k )  e.  ( F `  ( s `
 k ) ) ) )
172, 4, 163anbi123d 1297 . . . 4  |-  ( t  =  s  ->  (
( t : suc  n
--> A  /\  ( t `
 (/) )  =  C  /\  A. j  e.  n  ( t `  suc  j )  e.  ( F `  ( t `
 j ) ) )  <->  ( s : suc  n --> A  /\  ( s `  (/) )  =  C  /\  A. k  e.  n  ( s `  suc  k )  e.  ( F `  (
s `  k )
) ) ) )
1817rexbidv 2965 . . 3  |-  ( t  =  s  ->  ( E. n  e.  om  ( t : suc  n
--> A  /\  ( t `
 (/) )  =  C  /\  A. j  e.  n  ( t `  suc  j )  e.  ( F `  ( t `
 j ) ) )  <->  E. n  e.  om  ( s : suc  n
--> A  /\  ( s `
 (/) )  =  C  /\  A. k  e.  n  ( s `  suc  k )  e.  ( F `  ( s `
 k ) ) ) ) )
1918cbvabv 2597 . 2  |-  { t  |  E. n  e. 
om  ( t : suc  n --> A  /\  ( t `  (/) )  =  C  /\  A. j  e.  n  ( t `  suc  j )  e.  ( F `  (
t `  j )
) ) }  =  { s  |  E. n  e.  om  (
s : suc  n --> A  /\  ( s `  (/) )  =  C  /\  A. k  e.  n  ( s `  suc  k
)  e.  ( F `
 ( s `  k ) ) ) }
20 eqid 2454 . 2  |-  ( x  e.  { t  |  E. n  e.  om  ( t : suc  n
--> A  /\  ( t `
 (/) )  =  C  /\  A. j  e.  n  ( t `  suc  j )  e.  ( F `  ( t `
 j ) ) ) }  |->  { y  e.  { t  |  E. n  e.  om  ( t : suc  n
--> A  /\  ( t `
 (/) )  =  C  /\  A. j  e.  n  ( t `  suc  j )  e.  ( F `  ( t `
 j ) ) ) }  |  ( dom  y  =  suc  dom  x  /\  ( y  |`  dom  x )  =  x ) } )  =  ( x  e. 
{ t  |  E. n  e.  om  (
t : suc  n --> A  /\  ( t `  (/) )  =  C  /\  A. j  e.  n  ( t `  suc  j
)  e.  ( F `
 ( t `  j ) ) ) }  |->  { y  e. 
{ t  |  E. n  e.  om  (
t : suc  n --> A  /\  ( t `  (/) )  =  C  /\  A. j  e.  n  ( t `  suc  j
)  e.  ( F `
 ( t `  j ) ) ) }  |  ( dom  y  =  suc  dom  x  /\  ( y  |`  dom  x )  =  x ) } )
211, 19, 20axdc3lem4 8824 1  |-  ( ( C  e.  A  /\  F : A --> ( ~P A  \  { (/) } ) )  ->  E. g
( g : om --> A  /\  ( g `  (/) )  =  C  /\  A. k  e.  om  (
g `  suc  k )  e.  ( F `  ( g `  k
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1398   E.wex 1617    e. wcel 1823   {cab 2439   A.wral 2804   E.wrex 2805   {crab 2808   _Vcvv 3106    \ cdif 3458   (/)c0 3783   ~Pcpw 3999   {csn 4016    |-> cmpt 4497   suc csuc 4869   dom cdm 4988    |` cres 4990   -->wf 5566   ` cfv 5570   omcom 6673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-dc 8817
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-om 6674  df-1o 7122
This theorem is referenced by:  axdc4lem  8826
  Copyright terms: Public domain W3C validator