MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem7 Structured version   Unicode version

Theorem axcontlem7 23216
Description: Lemma for axcont 23222. Given two points in  D, one preceeds the other iff its scaling constant is less than the other point's. (Contributed by Scott Fenton, 18-Jun-2013.)
Hypotheses
Ref Expression
axcontlem7.1  |-  D  =  { p  e.  ( EE `  N )  |  ( U  Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) }
axcontlem7.2  |-  F  =  { <. x ,  t
>.  |  ( x  e.  D  /\  (
t  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  ( U `  i )
) ) ) ) }
Assertion
Ref Expression
axcontlem7  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  ( P  e.  D  /\  Q  e.  D )
)  ->  ( P  Btwn  <. Z ,  Q >.  <-> 
( F `  P
)  <_  ( F `  Q ) ) )
Distinct variable groups:    t, D, x    i, F, t    i, p, x, N, t    P, i, t, x    Q, i, t, x    U, i, p, t, x    i, Z, p, t, x
Allowed substitution hints:    D( i, p)    P( p)    Q( p)    F( x, p)

Proof of Theorem axcontlem7
StepHypRef Expression
1 axcontlem7.1 . . . . . 6  |-  D  =  { p  e.  ( EE `  N )  |  ( U  Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) }
2 ssrab2 3437 . . . . . 6  |-  { p  e.  ( EE `  N
)  |  ( U 
Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) }  C_  ( EE `  N )
31, 2eqsstri 3386 . . . . 5  |-  D  C_  ( EE `  N )
43sseli 3352 . . . 4  |-  ( P  e.  D  ->  P  e.  ( EE `  N
) )
54ad2antrl 727 . . 3  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  ( P  e.  D  /\  Q  e.  D )
)  ->  P  e.  ( EE `  N ) )
6 simpll2 1028 . . 3  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  ( P  e.  D  /\  Q  e.  D )
)  ->  Z  e.  ( EE `  N ) )
73sseli 3352 . . . 4  |-  ( Q  e.  D  ->  Q  e.  ( EE `  N
) )
87ad2antll 728 . . 3  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  ( P  e.  D  /\  Q  e.  D )
)  ->  Q  e.  ( EE `  N ) )
9 brbtwn 23145 . . 3  |-  ( ( P  e.  ( EE
`  N )  /\  Z  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) )  ->  ( P  Btwn  <. Z ,  Q >.  <->  E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( P `  i
)  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( t  x.  ( Q `  i
) ) ) ) )
105, 6, 8, 9syl3anc 1218 . 2  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  ( P  e.  D  /\  Q  e.  D )
)  ->  ( P  Btwn  <. Z ,  Q >.  <->  E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( P `  i
)  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( t  x.  ( Q `  i
) ) ) ) )
11 axcontlem7.2 . . . . 5  |-  F  =  { <. x ,  t
>.  |  ( x  e.  D  /\  (
t  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  ( U `  i )
) ) ) ) }
121, 11axcontlem6 23215 . . . 4  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  P  e.  D )  ->  (
( F `  P
)  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( P `  i )  =  ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  i ) )  +  ( ( F `  P )  x.  ( U `  i )
) ) ) )
131, 11axcontlem6 23215 . . . 4  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  Q  e.  D )  ->  (
( F `  Q
)  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( Q `  i )  =  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) ) )
1412, 13anim12dan 833 . . 3  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  ( P  e.  D  /\  Q  e.  D )
)  ->  ( (
( F `  P
)  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( P `  i )  =  ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  i ) )  +  ( ( F `  P )  x.  ( U `  i )
) ) )  /\  ( ( F `  Q )  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( Q `  i
)  =  ( ( ( 1  -  ( F `  Q )
)  x.  ( Z `
 i ) )  +  ( ( F `
 Q )  x.  ( U `  i
) ) ) ) ) )
15 an4 820 . . . . 5  |-  ( ( ( ( F `  P )  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( P `  i
)  =  ( ( ( 1  -  ( F `  P )
)  x.  ( Z `
 i ) )  +  ( ( F `
 P )  x.  ( U `  i
) ) ) )  /\  ( ( F `
 Q )  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N
) ( Q `  i )  =  ( ( ( 1  -  ( F `  Q
) )  x.  ( Z `  i )
)  +  ( ( F `  Q )  x.  ( U `  i ) ) ) ) )  <->  ( (
( F `  P
)  e.  ( 0 [,) +oo )  /\  ( F `  Q )  e.  ( 0 [,) +oo ) )  /\  ( A. i  e.  (
1 ... N ) ( P `  i )  =  ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  i ) )  +  ( ( F `  P )  x.  ( U `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( Q `  i )  =  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) ) ) )
16 r19.26 2849 . . . . . 6  |-  ( A. i  e.  ( 1 ... N ) ( ( P `  i
)  =  ( ( ( 1  -  ( F `  P )
)  x.  ( Z `
 i ) )  +  ( ( F `
 P )  x.  ( U `  i
) ) )  /\  ( Q `  i )  =  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) )  <->  ( A. i  e.  ( 1 ... N ) ( P `  i )  =  ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  i ) )  +  ( ( F `  P )  x.  ( U `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( Q `  i )  =  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) ) )
1716anbi2i 694 . . . . 5  |-  ( ( ( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  A. i  e.  ( 1 ... N
) ( ( P `
 i )  =  ( ( ( 1  -  ( F `  P ) )  x.  ( Z `  i
) )  +  ( ( F `  P
)  x.  ( U `
 i ) ) )  /\  ( Q `
 i )  =  ( ( ( 1  -  ( F `  Q ) )  x.  ( Z `  i
) )  +  ( ( F `  Q
)  x.  ( U `
 i ) ) ) ) )  <->  ( (
( F `  P
)  e.  ( 0 [,) +oo )  /\  ( F `  Q )  e.  ( 0 [,) +oo ) )  /\  ( A. i  e.  (
1 ... N ) ( P `  i )  =  ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  i ) )  +  ( ( F `  P )  x.  ( U `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( Q `  i )  =  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) ) ) )
1815, 17bitr4i 252 . . . 4  |-  ( ( ( ( F `  P )  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( P `  i
)  =  ( ( ( 1  -  ( F `  P )
)  x.  ( Z `
 i ) )  +  ( ( F `
 P )  x.  ( U `  i
) ) ) )  /\  ( ( F `
 Q )  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N
) ( Q `  i )  =  ( ( ( 1  -  ( F `  Q
) )  x.  ( Z `  i )
)  +  ( ( F `  Q )  x.  ( U `  i ) ) ) ) )  <->  ( (
( F `  P
)  e.  ( 0 [,) +oo )  /\  ( F `  Q )  e.  ( 0 [,) +oo ) )  /\  A. i  e.  ( 1 ... N ) ( ( P `  i
)  =  ( ( ( 1  -  ( F `  P )
)  x.  ( Z `
 i ) )  +  ( ( F `
 P )  x.  ( U `  i
) ) )  /\  ( Q `  i )  =  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) ) ) )
19 id 22 . . . . . . . . . 10  |-  ( ( P `  i )  =  ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  i ) )  +  ( ( F `  P )  x.  ( U `  i )
) )  ->  ( P `  i )  =  ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  i ) )  +  ( ( F `  P )  x.  ( U `  i )
) ) )
20 oveq2 6099 . . . . . . . . . . 11  |-  ( ( Q `  i )  =  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) )  ->  (
t  x.  ( Q `
 i ) )  =  ( t  x.  ( ( ( 1  -  ( F `  Q ) )  x.  ( Z `  i
) )  +  ( ( F `  Q
)  x.  ( U `
 i ) ) ) ) )
2120oveq2d 6107 . . . . . . . . . 10  |-  ( ( Q `  i )  =  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) )  ->  (
( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( Q `  i ) ) )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  (
( ( 1  -  ( F `  Q
) )  x.  ( Z `  i )
)  +  ( ( F `  Q )  x.  ( U `  i ) ) ) ) ) )
2219, 21eqeqan12d 2458 . . . . . . . . 9  |-  ( ( ( P `  i
)  =  ( ( ( 1  -  ( F `  P )
)  x.  ( Z `
 i ) )  +  ( ( F `
 P )  x.  ( U `  i
) ) )  /\  ( Q `  i )  =  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) )  -> 
( ( P `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( Q `  i ) ) )  <-> 
( ( ( 1  -  ( F `  P ) )  x.  ( Z `  i
) )  +  ( ( F `  P
)  x.  ( U `
 i ) ) )  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( t  x.  ( ( ( 1  -  ( F `  Q ) )  x.  ( Z `  i
) )  +  ( ( F `  Q
)  x.  ( U `
 i ) ) ) ) ) ) )
2322ralimi 2791 . . . . . . . 8  |-  ( A. i  e.  ( 1 ... N ) ( ( P `  i
)  =  ( ( ( 1  -  ( F `  P )
)  x.  ( Z `
 i ) )  +  ( ( F `
 P )  x.  ( U `  i
) ) )  /\  ( Q `  i )  =  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) )  ->  A. i  e.  (
1 ... N ) ( ( P `  i
)  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( t  x.  ( Q `  i
) ) )  <->  ( (
( 1  -  ( F `  P )
)  x.  ( Z `
 i ) )  +  ( ( F `
 P )  x.  ( U `  i
) ) )  =  ( ( ( 1  -  t )  x.  ( Z `  i
) )  +  ( t  x.  ( ( ( 1  -  ( F `  Q )
)  x.  ( Z `
 i ) )  +  ( ( F `
 Q )  x.  ( U `  i
) ) ) ) ) ) )
24 ralbi 2853 . . . . . . . 8  |-  ( A. i  e.  ( 1 ... N ) ( ( P `  i
)  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( t  x.  ( Q `  i
) ) )  <->  ( (
( 1  -  ( F `  P )
)  x.  ( Z `
 i ) )  +  ( ( F `
 P )  x.  ( U `  i
) ) )  =  ( ( ( 1  -  t )  x.  ( Z `  i
) )  +  ( t  x.  ( ( ( 1  -  ( F `  Q )
)  x.  ( Z `
 i ) )  +  ( ( F `
 Q )  x.  ( U `  i
) ) ) ) ) )  ->  ( A. i  e.  (
1 ... N ) ( P `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  ( Q `  i )
) )  <->  A. i  e.  ( 1 ... N
) ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  i ) )  +  ( ( F `  P )  x.  ( U `  i )
) )  =  ( ( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) ) ) ) )
2523, 24syl 16 . . . . . . 7  |-  ( A. i  e.  ( 1 ... N ) ( ( P `  i
)  =  ( ( ( 1  -  ( F `  P )
)  x.  ( Z `
 i ) )  +  ( ( F `
 P )  x.  ( U `  i
) ) )  /\  ( Q `  i )  =  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) )  -> 
( A. i  e.  ( 1 ... N
) ( P `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( Q `  i ) ) )  <->  A. i  e.  (
1 ... N ) ( ( ( 1  -  ( F `  P
) )  x.  ( Z `  i )
)  +  ( ( F `  P )  x.  ( U `  i ) ) )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  (
( ( 1  -  ( F `  Q
) )  x.  ( Z `  i )
)  +  ( ( F `  Q )  x.  ( U `  i ) ) ) ) ) ) )
2625rexbidv 2736 . . . . . 6  |-  ( A. i  e.  ( 1 ... N ) ( ( P `  i
)  =  ( ( ( 1  -  ( F `  P )
)  x.  ( Z `
 i ) )  +  ( ( F `
 P )  x.  ( U `  i
) ) )  /\  ( Q `  i )  =  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) )  -> 
( E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( P `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( Q `  i ) ) )  <->  E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( ( 1  -  ( F `  P ) )  x.  ( Z `  i
) )  +  ( ( F `  P
)  x.  ( U `
 i ) ) )  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( t  x.  ( ( ( 1  -  ( F `  Q ) )  x.  ( Z `  i
) )  +  ( ( F `  Q
)  x.  ( U `
 i ) ) ) ) ) ) )
27 simpll2 1028 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  Z  e.  ( EE `  N
) )
28 fveecn 23148 . . . . . . . . . . . . 13  |-  ( ( Z  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( Z `  i )  e.  CC )
2927, 28sylan 471 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( Z `  i )  e.  CC )
30 simpll3 1029 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  U  e.  ( EE `  N
) )
31 fveecn 23148 . . . . . . . . . . . . 13  |-  ( ( U  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( U `  i )  e.  CC )
3230, 31sylan 471 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( U `  i )  e.  CC )
33 0re 9386 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR
34 1re 9385 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR
3533, 34elicc2i 11361 . . . . . . . . . . . . . . . 16  |-  ( t  e.  ( 0 [,] 1 )  <->  ( t  e.  RR  /\  0  <_ 
t  /\  t  <_  1 ) )
3635simp1bi 1003 . . . . . . . . . . . . . . 15  |-  ( t  e.  ( 0 [,] 1 )  ->  t  e.  RR )
3736recnd 9412 . . . . . . . . . . . . . 14  |-  ( t  e.  ( 0 [,] 1 )  ->  t  e.  CC )
3837ad2antll 728 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  t  e.  CC )
3938adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  /\  i  e.  ( 1 ... N
) )  ->  t  e.  CC )
40 elrege0 11392 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  P )  e.  ( 0 [,) +oo )  <->  ( ( F `
 P )  e.  RR  /\  0  <_ 
( F `  P
) ) )
4140simplbi 460 . . . . . . . . . . . . . . . 16  |-  ( ( F `  P )  e.  ( 0 [,) +oo )  ->  ( F `
 P )  e.  RR )
4241recnd 9412 . . . . . . . . . . . . . . 15  |-  ( ( F `  P )  e.  ( 0 [,) +oo )  ->  ( F `
 P )  e.  CC )
4342adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( F `  P
)  e.  ( 0 [,) +oo )  /\  ( F `  Q )  e.  ( 0 [,) +oo ) )  ->  ( F `  P )  e.  CC )
4443ad2antrl 727 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  ( F `  P )  e.  CC )
4544adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( F `  P )  e.  CC )
46 elrege0 11392 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  Q )  e.  ( 0 [,) +oo )  <->  ( ( F `
 Q )  e.  RR  /\  0  <_ 
( F `  Q
) ) )
4746simplbi 460 . . . . . . . . . . . . . . . 16  |-  ( ( F `  Q )  e.  ( 0 [,) +oo )  ->  ( F `
 Q )  e.  RR )
4847recnd 9412 . . . . . . . . . . . . . . 15  |-  ( ( F `  Q )  e.  ( 0 [,) +oo )  ->  ( F `
 Q )  e.  CC )
4948adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( F `  P
)  e.  ( 0 [,) +oo )  /\  ( F `  Q )  e.  ( 0 [,) +oo ) )  ->  ( F `  Q )  e.  CC )
5049ad2antrl 727 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  ( F `  Q )  e.  CC )
5150adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( F `  Q )  e.  CC )
52 ax-1cn 9340 . . . . . . . . . . . . . . . . 17  |-  1  e.  CC
53 simpr1 994 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
t  e.  CC )
54 simpr3 996 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( F `  Q
)  e.  CC )
5553, 54mulcld 9406 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( t  x.  ( F `  Q )
)  e.  CC )
56 subcl 9609 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  e.  CC  /\  ( t  x.  ( F `  Q )
)  e.  CC )  ->  ( 1  -  ( t  x.  ( F `  Q )
) )  e.  CC )
5752, 55, 56sylancr 663 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( 1  -  (
t  x.  ( F `
 Q ) ) )  e.  CC )
58 subcl 9609 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  e.  CC  /\  ( F `  P )  e.  CC )  -> 
( 1  -  ( F `  P )
)  e.  CC )
5952, 58mpan 670 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  P )  e.  CC  ->  (
1  -  ( F `
 P ) )  e.  CC )
60593ad2ant2 1010 . . . . . . . . . . . . . . . . 17  |-  ( ( t  e.  CC  /\  ( F `  P )  e.  CC  /\  ( F `  Q )  e.  CC )  ->  (
1  -  ( F `
 P ) )  e.  CC )
6160adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( 1  -  ( F `  P )
)  e.  CC )
62 simpll 753 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( Z `  i
)  e.  CC )
6357, 61, 62subdird 9801 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( 1  -  ( t  x.  ( F `  Q
) ) )  -  ( 1  -  ( F `  P )
) )  x.  ( Z `  i )
)  =  ( ( ( 1  -  (
t  x.  ( F `
 Q ) ) )  x.  ( Z `
 i ) )  -  ( ( 1  -  ( F `  P ) )  x.  ( Z `  i
) ) ) )
64 simpr2 995 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( F `  P
)  e.  CC )
65 nnncan1 9645 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  e.  CC  /\  ( t  x.  ( F `  Q )
)  e.  CC  /\  ( F `  P )  e.  CC )  -> 
( ( 1  -  ( t  x.  ( F `  Q )
) )  -  (
1  -  ( F `
 P ) ) )  =  ( ( F `  P )  -  ( t  x.  ( F `  Q
) ) ) )
6652, 65mp3an1 1301 . . . . . . . . . . . . . . . . 17  |-  ( ( ( t  x.  ( F `  Q )
)  e.  CC  /\  ( F `  P )  e.  CC )  -> 
( ( 1  -  ( t  x.  ( F `  Q )
) )  -  (
1  -  ( F `
 P ) ) )  =  ( ( F `  P )  -  ( t  x.  ( F `  Q
) ) ) )
6755, 64, 66syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( 1  -  ( t  x.  ( F `  Q )
) )  -  (
1  -  ( F `
 P ) ) )  =  ( ( F `  P )  -  ( t  x.  ( F `  Q
) ) ) )
6867oveq1d 6106 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( 1  -  ( t  x.  ( F `  Q
) ) )  -  ( 1  -  ( F `  P )
) )  x.  ( Z `  i )
)  =  ( ( ( F `  P
)  -  ( t  x.  ( F `  Q ) ) )  x.  ( Z `  i ) ) )
69 subdi 9778 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( t  e.  CC  /\  1  e.  CC  /\  ( F `  Q )  e.  CC )  ->  (
t  x.  ( 1  -  ( F `  Q ) ) )  =  ( ( t  x.  1 )  -  ( t  x.  ( F `  Q )
) ) )
7052, 69mp3an2 1302 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( t  e.  CC  /\  ( F `  Q )  e.  CC )  -> 
( t  x.  (
1  -  ( F `
 Q ) ) )  =  ( ( t  x.  1 )  -  ( t  x.  ( F `  Q
) ) ) )
71 mulid1 9383 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( t  e.  CC  ->  (
t  x.  1 )  =  t )
7271adantr 465 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( t  e.  CC  /\  ( F `  Q )  e.  CC )  -> 
( t  x.  1 )  =  t )
7372oveq1d 6106 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( t  e.  CC  /\  ( F `  Q )  e.  CC )  -> 
( ( t  x.  1 )  -  (
t  x.  ( F `
 Q ) ) )  =  ( t  -  ( t  x.  ( F `  Q
) ) ) )
7470, 73eqtrd 2475 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( t  e.  CC  /\  ( F `  Q )  e.  CC )  -> 
( t  x.  (
1  -  ( F `
 Q ) ) )  =  ( t  -  ( t  x.  ( F `  Q
) ) ) )
7553, 54, 74syl2anc 661 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( t  x.  (
1  -  ( F `
 Q ) ) )  =  ( t  -  ( t  x.  ( F `  Q
) ) ) )
7675oveq2d 6107 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( 1  -  t )  +  ( t  x.  ( 1  -  ( F `  Q ) ) ) )  =  ( ( 1  -  t )  +  ( t  -  ( t  x.  ( F `  Q )
) ) ) )
77 npncan 9630 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1  e.  CC  /\  t  e.  CC  /\  (
t  x.  ( F `
 Q ) )  e.  CC )  -> 
( ( 1  -  t )  +  ( t  -  ( t  x.  ( F `  Q ) ) ) )  =  ( 1  -  ( t  x.  ( F `  Q
) ) ) )
7852, 77mp3an1 1301 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( t  e.  CC  /\  ( t  x.  ( F `  Q )
)  e.  CC )  ->  ( ( 1  -  t )  +  ( t  -  (
t  x.  ( F `
 Q ) ) ) )  =  ( 1  -  ( t  x.  ( F `  Q ) ) ) )
7953, 55, 78syl2anc 661 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( 1  -  t )  +  ( t  -  ( t  x.  ( F `  Q ) ) ) )  =  ( 1  -  ( t  x.  ( F `  Q
) ) ) )
8076, 79eqtr2d 2476 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( 1  -  (
t  x.  ( F `
 Q ) ) )  =  ( ( 1  -  t )  +  ( t  x.  ( 1  -  ( F `  Q )
) ) ) )
8180oveq1d 6106 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( 1  -  ( t  x.  ( F `  Q )
) )  x.  ( Z `  i )
)  =  ( ( ( 1  -  t
)  +  ( t  x.  ( 1  -  ( F `  Q
) ) ) )  x.  ( Z `  i ) ) )
82 subcl 9609 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1  e.  CC  /\  t  e.  CC )  ->  ( 1  -  t
)  e.  CC )
8352, 82mpan 670 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  e.  CC  ->  (
1  -  t )  e.  CC )
84833ad2ant1 1009 . . . . . . . . . . . . . . . . . . 19  |-  ( ( t  e.  CC  /\  ( F `  P )  e.  CC  /\  ( F `  Q )  e.  CC )  ->  (
1  -  t )  e.  CC )
8584adantl 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( 1  -  t
)  e.  CC )
86 subcl 9609 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1  e.  CC  /\  ( F `  Q )  e.  CC )  -> 
( 1  -  ( F `  Q )
)  e.  CC )
8752, 86mpan 670 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F `  Q )  e.  CC  ->  (
1  -  ( F `
 Q ) )  e.  CC )
88873ad2ant3 1011 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( t  e.  CC  /\  ( F `  P )  e.  CC  /\  ( F `  Q )  e.  CC )  ->  (
1  -  ( F `
 Q ) )  e.  CC )
8988adantl 466 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( 1  -  ( F `  Q )
)  e.  CC )
9053, 89mulcld 9406 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( t  x.  (
1  -  ( F `
 Q ) ) )  e.  CC )
9185, 90, 62adddird 9411 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( 1  -  t )  +  ( t  x.  (
1  -  ( F `
 Q ) ) ) )  x.  ( Z `  i )
)  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( ( t  x.  ( 1  -  ( F `  Q
) ) )  x.  ( Z `  i
) ) ) )
9253, 89, 62mulassd 9409 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( t  x.  ( 1  -  ( F `  Q )
) )  x.  ( Z `  i )
)  =  ( t  x.  ( ( 1  -  ( F `  Q ) )  x.  ( Z `  i
) ) ) )
9392oveq2d 6107 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( 1  -  t )  x.  ( Z `  i
) )  +  ( ( t  x.  (
1  -  ( F `
 Q ) ) )  x.  ( Z `
 i ) ) )  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( t  x.  ( ( 1  -  ( F `  Q
) )  x.  ( Z `  i )
) ) ) )
9481, 91, 933eqtrd 2479 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( 1  -  ( t  x.  ( F `  Q )
) )  x.  ( Z `  i )
)  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( t  x.  ( ( 1  -  ( F `  Q
) )  x.  ( Z `  i )
) ) ) )
9594oveq1d 6106 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( 1  -  ( t  x.  ( F `  Q
) ) )  x.  ( Z `  i
) )  -  (
( 1  -  ( F `  P )
)  x.  ( Z `
 i ) ) )  =  ( ( ( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( ( 1  -  ( F `  Q ) )  x.  ( Z `  i
) ) ) )  -  ( ( 1  -  ( F `  P ) )  x.  ( Z `  i
) ) ) )
9663, 68, 953eqtr3d 2483 . . . . . . . . . . . . . 14  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( F `
 P )  -  ( t  x.  ( F `  Q )
) )  x.  ( Z `  i )
)  =  ( ( ( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( ( 1  -  ( F `  Q ) )  x.  ( Z `  i
) ) ) )  -  ( ( 1  -  ( F `  P ) )  x.  ( Z `  i
) ) ) )
97 simplr 754 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( U `  i
)  e.  CC )
9864, 55, 97subdird 9801 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( F `
 P )  -  ( t  x.  ( F `  Q )
) )  x.  ( U `  i )
)  =  ( ( ( F `  P
)  x.  ( U `
 i ) )  -  ( ( t  x.  ( F `  Q ) )  x.  ( U `  i
) ) ) )
9953, 54, 97mulassd 9409 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( t  x.  ( F `  Q
) )  x.  ( U `  i )
)  =  ( t  x.  ( ( F `
 Q )  x.  ( U `  i
) ) ) )
10099oveq2d 6107 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( F `
 P )  x.  ( U `  i
) )  -  (
( t  x.  ( F `  Q )
)  x.  ( U `
 i ) ) )  =  ( ( ( F `  P
)  x.  ( U `
 i ) )  -  ( t  x.  ( ( F `  Q )  x.  ( U `  i )
) ) ) )
10198, 100eqtrd 2475 . . . . . . . . . . . . . 14  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( F `
 P )  -  ( t  x.  ( F `  Q )
) )  x.  ( U `  i )
)  =  ( ( ( F `  P
)  x.  ( U `
 i ) )  -  ( t  x.  ( ( F `  Q )  x.  ( U `  i )
) ) ) )
10296, 101eqeq12d 2457 . . . . . . . . . . . . 13  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( ( F `  P )  -  ( t  x.  ( F `  Q
) ) )  x.  ( Z `  i
) )  =  ( ( ( F `  P )  -  (
t  x.  ( F `
 Q ) ) )  x.  ( U `
 i ) )  <-> 
( ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  (
( 1  -  ( F `  Q )
)  x.  ( Z `
 i ) ) ) )  -  (
( 1  -  ( F `  P )
)  x.  ( Z `
 i ) ) )  =  ( ( ( F `  P
)  x.  ( U `
 i ) )  -  ( t  x.  ( ( F `  Q )  x.  ( U `  i )
) ) ) ) )
10361, 62mulcld 9406 . . . . . . . . . . . . . 14  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( 1  -  ( F `  P
) )  x.  ( Z `  i )
)  e.  CC )
10464, 97mulcld 9406 . . . . . . . . . . . . . 14  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( F `  P )  x.  ( U `  i )
)  e.  CC )
10585, 62mulcld 9406 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( 1  -  t )  x.  ( Z `  i )
)  e.  CC )
10689, 62mulcld 9406 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( 1  -  ( F `  Q
) )  x.  ( Z `  i )
)  e.  CC )
10753, 106mulcld 9406 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( t  x.  (
( 1  -  ( F `  Q )
)  x.  ( Z `
 i ) ) )  e.  CC )
108105, 107addcld 9405 . . . . . . . . . . . . . 14  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( 1  -  t )  x.  ( Z `  i
) )  +  ( t  x.  ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) ) ) )  e.  CC )
10954, 97mulcld 9406 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( F `  Q )  x.  ( U `  i )
)  e.  CC )
11053, 109mulcld 9406 . . . . . . . . . . . . . 14  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( t  x.  (
( F `  Q
)  x.  ( U `
 i ) ) )  e.  CC )
111103, 104, 108, 110addsubeq4d 9770 . . . . . . . . . . . . 13  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  i ) )  +  ( ( F `  P )  x.  ( U `  i )
) )  =  ( ( ( ( 1  -  t )  x.  ( Z `  i
) )  +  ( t  x.  ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) ) ) )  +  ( t  x.  ( ( F `
 Q )  x.  ( U `  i
) ) ) )  <-> 
( ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  (
( 1  -  ( F `  Q )
)  x.  ( Z `
 i ) ) ) )  -  (
( 1  -  ( F `  P )
)  x.  ( Z `
 i ) ) )  =  ( ( ( F `  P
)  x.  ( U `
 i ) )  -  ( t  x.  ( ( F `  Q )  x.  ( U `  i )
) ) ) ) )
112105, 107, 110addassd 9408 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  (
( 1  -  ( F `  Q )
)  x.  ( Z `
 i ) ) ) )  +  ( t  x.  ( ( F `  Q )  x.  ( U `  i ) ) ) )  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( ( t  x.  ( ( 1  -  ( F `  Q ) )  x.  ( Z `  i
) ) )  +  ( t  x.  (
( F `  Q
)  x.  ( U `
 i ) ) ) ) ) )
11353, 106, 109adddid 9410 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( t  x.  (
( ( 1  -  ( F `  Q
) )  x.  ( Z `  i )
)  +  ( ( F `  Q )  x.  ( U `  i ) ) ) )  =  ( ( t  x.  ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) ) )  +  ( t  x.  ( ( F `  Q )  x.  ( U `  i )
) ) ) )
114113oveq2d 6107 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( 1  -  t )  x.  ( Z `  i
) )  +  ( t  x.  ( ( ( 1  -  ( F `  Q )
)  x.  ( Z `
 i ) )  +  ( ( F `
 Q )  x.  ( U `  i
) ) ) ) )  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( ( t  x.  ( ( 1  -  ( F `  Q ) )  x.  ( Z `  i
) ) )  +  ( t  x.  (
( F `  Q
)  x.  ( U `
 i ) ) ) ) ) )
115112, 114eqtr4d 2478 . . . . . . . . . . . . . 14  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  (
( 1  -  ( F `  Q )
)  x.  ( Z `
 i ) ) ) )  +  ( t  x.  ( ( F `  Q )  x.  ( U `  i ) ) ) )  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( t  x.  ( ( ( 1  -  ( F `  Q ) )  x.  ( Z `  i
) )  +  ( ( F `  Q
)  x.  ( U `
 i ) ) ) ) ) )
116115eqeq2d 2454 . . . . . . . . . . . . 13  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  i ) )  +  ( ( F `  P )  x.  ( U `  i )
) )  =  ( ( ( ( 1  -  t )  x.  ( Z `  i
) )  +  ( t  x.  ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) ) ) )  +  ( t  x.  ( ( F `
 Q )  x.  ( U `  i
) ) ) )  <-> 
( ( ( 1  -  ( F `  P ) )  x.  ( Z `  i
) )  +  ( ( F `  P
)  x.  ( U `
 i ) ) )  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( t  x.  ( ( ( 1  -  ( F `  Q ) )  x.  ( Z `  i
) )  +  ( ( F `  Q
)  x.  ( U `
 i ) ) ) ) ) ) )
117102, 111, 1163bitr2rd 282 . . . . . . . . . . . 12  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  i ) )  +  ( ( F `  P )  x.  ( U `  i )
) )  =  ( ( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) ) )  <-> 
( ( ( F `
 P )  -  ( t  x.  ( F `  Q )
) )  x.  ( Z `  i )
)  =  ( ( ( F `  P
)  -  ( t  x.  ( F `  Q ) ) )  x.  ( U `  i ) ) ) )
11829, 32, 39, 45, 51, 117syl23anc 1225 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( 1  -  ( F `  P ) )  x.  ( Z `  i
) )  +  ( ( F `  P
)  x.  ( U `
 i ) ) )  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( t  x.  ( ( ( 1  -  ( F `  Q ) )  x.  ( Z `  i
) )  +  ( ( F `  Q
)  x.  ( U `
 i ) ) ) ) )  <->  ( (
( F `  P
)  -  ( t  x.  ( F `  Q ) ) )  x.  ( Z `  i ) )  =  ( ( ( F `
 P )  -  ( t  x.  ( F `  Q )
) )  x.  ( U `  i )
) ) )
119118ralbidva 2731 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  ( A. i  e.  (
1 ... N ) ( ( ( 1  -  ( F `  P
) )  x.  ( Z `  i )
)  +  ( ( F `  P )  x.  ( U `  i ) ) )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  (
( ( 1  -  ( F `  Q
) )  x.  ( Z `  i )
)  +  ( ( F `  Q )  x.  ( U `  i ) ) ) ) )  <->  A. i  e.  ( 1 ... N
) ( ( ( F `  P )  -  ( t  x.  ( F `  Q
) ) )  x.  ( Z `  i
) )  =  ( ( ( F `  P )  -  (
t  x.  ( F `
 Q ) ) )  x.  ( U `
 i ) ) ) )
12039, 51mulcld 9406 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
t  x.  ( F `
 Q ) )  e.  CC )
12145, 120subcld 9719 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( F `  P
)  -  ( t  x.  ( F `  Q ) ) )  e.  CC )
122 mulcan1g 9989 . . . . . . . . . . . 12  |-  ( ( ( ( F `  P )  -  (
t  x.  ( F `
 Q ) ) )  e.  CC  /\  ( Z `  i )  e.  CC  /\  ( U `  i )  e.  CC )  ->  (
( ( ( F `
 P )  -  ( t  x.  ( F `  Q )
) )  x.  ( Z `  i )
)  =  ( ( ( F `  P
)  -  ( t  x.  ( F `  Q ) ) )  x.  ( U `  i ) )  <->  ( (
( F `  P
)  -  ( t  x.  ( F `  Q ) ) )  =  0  \/  ( Z `  i )  =  ( U `  i ) ) ) )
123121, 29, 32, 122syl3anc 1218 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( F `
 P )  -  ( t  x.  ( F `  Q )
) )  x.  ( Z `  i )
)  =  ( ( ( F `  P
)  -  ( t  x.  ( F `  Q ) ) )  x.  ( U `  i ) )  <->  ( (
( F `  P
)  -  ( t  x.  ( F `  Q ) ) )  =  0  \/  ( Z `  i )  =  ( U `  i ) ) ) )
124123ralbidva 2731 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  ( A. i  e.  (
1 ... N ) ( ( ( F `  P )  -  (
t  x.  ( F `
 Q ) ) )  x.  ( Z `
 i ) )  =  ( ( ( F `  P )  -  ( t  x.  ( F `  Q
) ) )  x.  ( U `  i
) )  <->  A. i  e.  ( 1 ... N
) ( ( ( F `  P )  -  ( t  x.  ( F `  Q
) ) )  =  0  \/  ( Z `
 i )  =  ( U `  i
) ) ) )
125 r19.32v 2866 . . . . . . . . . . 11  |-  ( A. i  e.  ( 1 ... N ) ( ( ( F `  P )  -  (
t  x.  ( F `
 Q ) ) )  =  0  \/  ( Z `  i
)  =  ( U `
 i ) )  <-> 
( ( ( F `
 P )  -  ( t  x.  ( F `  Q )
) )  =  0  \/  A. i  e.  ( 1 ... N
) ( Z `  i )  =  ( U `  i ) ) )
126 simplr 754 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  Z  =/=  U )
127126neneqd 2624 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  -.  Z  =  U )
128 biorf 405 . . . . . . . . . . . . . 14  |-  ( -.  Z  =  U  -> 
( ( ( F `
 P )  -  ( t  x.  ( F `  Q )
) )  =  0  <-> 
( Z  =  U  \/  ( ( F `
 P )  -  ( t  x.  ( F `  Q )
) )  =  0 ) ) )
129 orcom 387 . . . . . . . . . . . . . 14  |-  ( ( Z  =  U  \/  ( ( F `  P )  -  (
t  x.  ( F `
 Q ) ) )  =  0 )  <-> 
( ( ( F `
 P )  -  ( t  x.  ( F `  Q )
) )  =  0  \/  Z  =  U ) )
130128, 129syl6bb 261 . . . . . . . . . . . . 13  |-  ( -.  Z  =  U  -> 
( ( ( F `
 P )  -  ( t  x.  ( F `  Q )
) )  =  0  <-> 
( ( ( F `
 P )  -  ( t  x.  ( F `  Q )
) )  =  0  \/  Z  =  U ) ) )
131127, 130syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  (
( ( F `  P )  -  (
t  x.  ( F `
 Q ) ) )  =  0  <->  (
( ( F `  P )  -  (
t  x.  ( F `
 Q ) ) )  =  0  \/  Z  =  U ) ) )
13238, 50mulcld 9406 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  (
t  x.  ( F `
 Q ) )  e.  CC )
13344, 132subeq0ad 9729 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  (
( ( F `  P )  -  (
t  x.  ( F `
 Q ) ) )  =  0  <->  ( F `  P )  =  ( t  x.  ( F `  Q
) ) ) )
134 eqeefv 23149 . . . . . . . . . . . . . . . 16  |-  ( ( Z  e.  ( EE
`  N )  /\  U  e.  ( EE `  N ) )  -> 
( Z  =  U  <->  A. i  e.  (
1 ... N ) ( Z `  i )  =  ( U `  i ) ) )
1351343adant1 1006 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  Z  e.  ( EE `  N )  /\  U  e.  ( EE `  N
) )  ->  ( Z  =  U  <->  A. i  e.  ( 1 ... N
) ( Z `  i )  =  ( U `  i ) ) )
136135adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  Z  e.  ( EE
`  N )  /\  U  e.  ( EE `  N ) )  /\  Z  =/=  U )  -> 
( Z  =  U  <->  A. i  e.  (
1 ... N ) ( Z `  i )  =  ( U `  i ) ) )
137136adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  ( Z  =  U  <->  A. i  e.  ( 1 ... N
) ( Z `  i )  =  ( U `  i ) ) )
138137orbi2d 701 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  (
( ( ( F `
 P )  -  ( t  x.  ( F `  Q )
) )  =  0  \/  Z  =  U )  <->  ( ( ( F `  P )  -  ( t  x.  ( F `  Q
) ) )  =  0  \/  A. i  e.  ( 1 ... N
) ( Z `  i )  =  ( U `  i ) ) ) )
139131, 133, 1383bitr3rd 284 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  (
( ( ( F `
 P )  -  ( t  x.  ( F `  Q )
) )  =  0  \/  A. i  e.  ( 1 ... N
) ( Z `  i )  =  ( U `  i ) )  <->  ( F `  P )  =  ( t  x.  ( F `
 Q ) ) ) )
140125, 139syl5bb 257 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  ( A. i  e.  (
1 ... N ) ( ( ( F `  P )  -  (
t  x.  ( F `
 Q ) ) )  =  0  \/  ( Z `  i
)  =  ( U `
 i ) )  <-> 
( F `  P
)  =  ( t  x.  ( F `  Q ) ) ) )
141119, 124, 1403bitrd 279 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  ( A. i  e.  (
1 ... N ) ( ( ( 1  -  ( F `  P
) )  x.  ( Z `  i )
)  +  ( ( F `  P )  x.  ( U `  i ) ) )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  (
( ( 1  -  ( F `  Q
) )  x.  ( Z `  i )
)  +  ( ( F `  Q )  x.  ( U `  i ) ) ) ) )  <->  ( F `  P )  =  ( t  x.  ( F `
 Q ) ) ) )
142141anassrs 648 . . . . . . . 8  |-  ( ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( F `  P
)  e.  ( 0 [,) +oo )  /\  ( F `  Q )  e.  ( 0 [,) +oo ) ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( A. i  e.  ( 1 ... N
) ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  i ) )  +  ( ( F `  P )  x.  ( U `  i )
) )  =  ( ( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) ) )  <-> 
( F `  P
)  =  ( t  x.  ( F `  Q ) ) ) )
143142rexbidva 2732 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( F `  P
)  e.  ( 0 [,) +oo )  /\  ( F `  Q )  e.  ( 0 [,) +oo ) ) )  -> 
( E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  i ) )  +  ( ( F `  P )  x.  ( U `  i )
) )  =  ( ( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) ) )  <->  E. t  e.  (
0 [,] 1 ) ( F `  P
)  =  ( t  x.  ( F `  Q ) ) ) )
14436adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  t  e.  RR )
14534a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  1  e.  RR )
14646biimpi 194 . . . . . . . . . . . . . 14  |-  ( ( F `  Q )  e.  ( 0 [,) +oo )  ->  ( ( F `  Q )  e.  RR  /\  0  <_  ( F `  Q
) ) )
147146ad2antlr 726 . . . . . . . . . . . . 13  |-  ( ( ( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( F `  Q )  e.  RR  /\  0  <_ 
( F `  Q
) ) )
14835simp3bi 1005 . . . . . . . . . . . . . 14  |-  ( t  e.  ( 0 [,] 1 )  ->  t  <_  1 )
149148adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  t  <_  1 )
150 lemul1a 10183 . . . . . . . . . . . . 13  |-  ( ( ( t  e.  RR  /\  1  e.  RR  /\  ( ( F `  Q )  e.  RR  /\  0  <_  ( F `  Q ) ) )  /\  t  <_  1
)  ->  ( t  x.  ( F `  Q
) )  <_  (
1  x.  ( F `
 Q ) ) )
151144, 145, 147, 149, 150syl31anc 1221 . . . . . . . . . . . 12  |-  ( ( ( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( t  x.  ( F `  Q
) )  <_  (
1  x.  ( F `
 Q ) ) )
15248ad2antlr 726 . . . . . . . . . . . . 13  |-  ( ( ( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( F `  Q )  e.  CC )
153152mulid2d 9404 . . . . . . . . . . . 12  |-  ( ( ( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( 1  x.  ( F `  Q ) )  =  ( F `  Q
) )
154151, 153breqtrd 4316 . . . . . . . . . . 11  |-  ( ( ( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( t  x.  ( F `  Q
) )  <_  ( F `  Q )
)
155 breq1 4295 . . . . . . . . . . 11  |-  ( ( F `  P )  =  ( t  x.  ( F `  Q
) )  ->  (
( F `  P
)  <_  ( F `  Q )  <->  ( t  x.  ( F `  Q
) )  <_  ( F `  Q )
) )
156154, 155syl5ibrcom 222 . . . . . . . . . 10  |-  ( ( ( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( F `  P )  =  ( t  x.  ( F `  Q
) )  ->  ( F `  P )  <_  ( F `  Q
) ) )
157156rexlimdva 2841 . . . . . . . . 9  |-  ( ( ( F `  P
)  e.  ( 0 [,) +oo )  /\  ( F `  Q )  e.  ( 0 [,) +oo ) )  ->  ( E. t  e.  (
0 [,] 1 ) ( F `  P
)  =  ( t  x.  ( F `  Q ) )  -> 
( F `  P
)  <_  ( F `  Q ) ) )
158 0elunit 11403 . . . . . . . . . . . . . 14  |-  0  e.  ( 0 [,] 1
)
159 simpl 457 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  P
)  =  0  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  ->  ( F `  P )  =  0 )
16048mul02d 9567 . . . . . . . . . . . . . . . 16  |-  ( ( F `  Q )  e.  ( 0 [,) +oo )  ->  ( 0  x.  ( F `  Q ) )  =  0 )
161160adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  P
)  =  0  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  ->  ( 0  x.  ( F `  Q
) )  =  0 )
162159, 161eqtr4d 2478 . . . . . . . . . . . . . 14  |-  ( ( ( F `  P
)  =  0  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  ->  ( F `  P )  =  ( 0  x.  ( F `
 Q ) ) )
163 oveq1 6098 . . . . . . . . . . . . . . . 16  |-  ( t  =  0  ->  (
t  x.  ( F `
 Q ) )  =  ( 0  x.  ( F `  Q
) ) )
164163eqeq2d 2454 . . . . . . . . . . . . . . 15  |-  ( t  =  0  ->  (
( F `  P
)  =  ( t  x.  ( F `  Q ) )  <->  ( F `  P )  =  ( 0  x.  ( F `
 Q ) ) ) )
165164rspcev 3073 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  ( 0 [,] 1 )  /\  ( F `  P )  =  ( 0  x.  ( F `  Q
) ) )  ->  E. t  e.  (
0 [,] 1 ) ( F `  P
)  =  ( t  x.  ( F `  Q ) ) )
166158, 162, 165sylancr 663 . . . . . . . . . . . . 13  |-  ( ( ( F `  P
)  =  0  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  ->  E. t  e.  ( 0 [,] 1 ) ( F `  P
)  =  ( t  x.  ( F `  Q ) ) )
167166adantrl 715 . . . . . . . . . . . 12  |-  ( ( ( F `  P
)  =  0  /\  ( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) ) )  ->  E. t  e.  ( 0 [,] 1
) ( F `  P )  =  ( t  x.  ( F `
 Q ) ) )
168167a1d 25 . . . . . . . . . . 11  |-  ( ( ( F `  P
)  =  0  /\  ( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) ) )  ->  ( ( F `  P )  <_  ( F `  Q
)  ->  E. t  e.  ( 0 [,] 1
) ( F `  P )  =  ( t  x.  ( F `
 Q ) ) ) )
169168ex 434 . . . . . . . . . 10  |-  ( ( F `  P )  =  0  ->  (
( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  ->  ( ( F `
 P )  <_ 
( F `  Q
)  ->  E. t  e.  ( 0 [,] 1
) ( F `  P )  =  ( t  x.  ( F `
 Q ) ) ) ) )
170 simp3 990 . . . . . . . . . . . . 13  |-  ( ( ( F `  P
)  =/=  0  /\  ( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  ( F `  P )  <_  ( F `  Q )
)  ->  ( F `  P )  <_  ( F `  Q )
)
17141adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  P
)  e.  ( 0 [,) +oo )  /\  ( F `  Q )  e.  ( 0 [,) +oo ) )  ->  ( F `  P )  e.  RR )
1721713ad2ant2 1010 . . . . . . . . . . . . . 14  |-  ( ( ( F `  P
)  =/=  0  /\  ( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  ( F `  P )  <_  ( F `  Q )
)  ->  ( F `  P )  e.  RR )
17340simprbi 464 . . . . . . . . . . . . . . . 16  |-  ( ( F `  P )  e.  ( 0 [,) +oo )  ->  0  <_ 
( F `  P
) )
174173adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  P
)  e.  ( 0 [,) +oo )  /\  ( F `  Q )  e.  ( 0 [,) +oo ) )  ->  0  <_  ( F `  P
) )
1751743ad2ant2 1010 . . . . . . . . . . . . . 14  |-  ( ( ( F `  P
)  =/=  0  /\  ( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  ( F `  P )  <_  ( F `  Q )
)  ->  0  <_  ( F `  P ) )
17647adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  P
)  e.  ( 0 [,) +oo )  /\  ( F `  Q )  e.  ( 0 [,) +oo ) )  ->  ( F `  Q )  e.  RR )
1771763ad2ant2 1010 . . . . . . . . . . . . . 14  |-  ( ( ( F `  P
)  =/=  0  /\  ( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  ( F `  P )  <_  ( F `  Q )
)  ->  ( F `  Q )  e.  RR )
17833a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  P
)  =/=  0  /\  ( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  ( F `  P )  <_  ( F `  Q )
)  ->  0  e.  RR )
179 simp1 988 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  P
)  =/=  0  /\  ( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  ( F `  P )  <_  ( F `  Q )
)  ->  ( F `  P )  =/=  0
)
180172, 175, 179ne0gt0d 9511 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  P
)  =/=  0  /\  ( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  ( F `  P )  <_  ( F `  Q )
)  ->  0  <  ( F `  P ) )
181178, 172, 177, 180, 170ltletrd 9531 . . . . . . . . . . . . . 14  |-  ( ( ( F `  P
)  =/=  0  /\  ( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  ( F `  P )  <_  ( F `  Q )
)  ->  0  <  ( F `  Q ) )
182 divelunit 11427 . . . . . . . . . . . . . 14  |-  ( ( ( ( F `  P )  e.  RR  /\  0  <_  ( F `  P ) )  /\  ( ( F `  Q )  e.  RR  /\  0  <  ( F `
 Q ) ) )  ->  ( (
( F `  P
)  /  ( F `
 Q ) )  e.  ( 0 [,] 1 )  <->  ( F `  P )  <_  ( F `  Q )
) )
183172, 175, 177, 181, 182syl22anc 1219 . . . . . . . . . . . . 13  |-  ( ( ( F `  P
)  =/=  0  /\  ( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  ( F `  P )  <_  ( F `  Q )
)  ->  ( (
( F `  P
)  /  ( F `
 Q ) )  e.  ( 0 [,] 1 )  <->  ( F `  P )  <_  ( F `  Q )
) )
184170, 183mpbird 232 . . . . . . . . . . . 12  |-  ( ( ( F `  P
)  =/=  0  /\  ( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  ( F `  P )  <_  ( F `  Q )
)  ->  ( ( F `  P )  /  ( F `  Q ) )  e.  ( 0 [,] 1
) )
185433ad2ant2 1010 . . . . . . . . . . . . . 14  |-  ( ( ( F `  P
)  =/=  0  /\  ( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  ( F `  P )  <_  ( F `  Q )
)  ->  ( F `  P )  e.  CC )
186493ad2ant2 1010 . . . . . . . . . . . . . 14  |-  ( ( ( F `  P
)  =/=  0  /\  ( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  ( F `  P )  <_  ( F `  Q )
)  ->  ( F `  Q )  e.  CC )
187181gt0ne0d 9904 . . . . . . . . . . . . . 14  |-  ( ( ( F `  P
)  =/=  0  /\  ( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  ( F `  P )  <_  ( F `  Q )
)  ->  ( F `  Q )  =/=  0
)
188185, 186, 187divcan1d 10108 . . . . . . . . . . . . 13  |-  ( ( ( F `  P
)  =/=  0  /\  ( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  ( F `  P )  <_  ( F `  Q )
)  ->  ( (
( F `  P
)  /  ( F `
 Q ) )  x.  ( F `  Q ) )  =  ( F `  P
) )
189188eqcomd 2448 . . . . . . . . . . . 12  |-  ( ( ( F `  P
)  =/=  0  /\  ( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  ( F `  P )  <_  ( F `  Q )
)  ->  ( F `  P )  =  ( ( ( F `  P )  /  ( F `  Q )
)  x.  ( F `
 Q ) ) )
190 oveq1 6098 . . . . . . . . . . . . . 14  |-  ( t  =  ( ( F `
 P )  / 
( F `  Q
) )  ->  (
t  x.  ( F `
 Q ) )  =  ( ( ( F `  P )  /  ( F `  Q ) )  x.  ( F `  Q
) ) )
191190eqeq2d 2454 . . . . . . . . . . . . 13  |-  ( t  =  ( ( F `
 P )  / 
( F `  Q
) )  ->  (
( F `  P
)  =  ( t  x.  ( F `  Q ) )  <->  ( F `  P )  =  ( ( ( F `  P )  /  ( F `  Q )
)  x.  ( F `
 Q ) ) ) )
192191rspcev 3073 . . . . . . . . . . . 12  |-  ( ( ( ( F `  P )  /  ( F `  Q )
)  e.  ( 0 [,] 1 )  /\  ( F `  P )  =  ( ( ( F `  P )  /  ( F `  Q ) )  x.  ( F `  Q
) ) )  ->  E. t  e.  (
0 [,] 1 ) ( F `  P
)  =  ( t  x.  ( F `  Q ) ) )
193184, 189, 192syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( F `  P
)  =/=  0  /\  ( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  ( F `  P )  <_  ( F `  Q )
)  ->  E. t  e.  ( 0 [,] 1
) ( F `  P )  =  ( t  x.  ( F `
 Q ) ) )
1941933exp 1186 . . . . . . . . . 10  |-  ( ( F `  P )  =/=  0  ->  (
( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  ->  ( ( F `
 P )  <_ 
( F `  Q
)  ->  E. t  e.  ( 0 [,] 1
) ( F `  P )  =  ( t  x.  ( F `
 Q ) ) ) ) )
195169, 194pm2.61ine 2687 . . . . . . . . 9  |-  ( ( ( F `  P
)  e.  ( 0 [,) +oo )  /\  ( F `  Q )  e.  ( 0 [,) +oo ) )  ->  (
( F `  P
)  <_  ( F `  Q )  ->  E. t  e.  ( 0 [,] 1
) ( F `  P )  =  ( t  x.  ( F `
 Q ) ) ) )
196157, 195impbid 191 . . . . . . . 8  |-  ( ( ( F `  P
)  e.  ( 0 [,) +oo )  /\  ( F `  Q )  e.  ( 0 [,) +oo ) )  ->  ( E. t  e.  (
0 [,] 1 ) ( F `  P
)  =  ( t  x.  ( F `  Q ) )  <->  ( F `  P )  <_  ( F `  Q )
) )
197196adantl 466 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( F `  P
)  e.  ( 0 [,) +oo )  /\  ( F `  Q )  e.  ( 0 [,) +oo ) ) )  -> 
( E. t  e.  ( 0 [,] 1
) ( F `  P )  =  ( t  x.  ( F `
 Q ) )  <-> 
( F `  P
)  <_  ( F `  Q ) ) )
198143, 197bitrd 253 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( F `  P
)  e.  ( 0 [,) +oo )  /\  ( F `  Q )  e.  ( 0 [,) +oo ) ) )  -> 
( E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  i ) )  +  ( ( F `  P )  x.  ( U `  i )
) )  =  ( ( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) ) )  <-> 
( F `  P
)  <_  ( F `  Q ) ) )
19926, 198sylan9bbr 700 . . . . 5  |-  ( ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( F `  P
)  e.  ( 0 [,) +oo )  /\  ( F `  Q )  e.  ( 0 [,) +oo ) ) )  /\  A. i  e.  ( 1 ... N ) ( ( P `  i
)  =  ( ( ( 1  -  ( F `  P )
)  x.  ( Z `
 i ) )  +  ( ( F `
 P )  x.  ( U `  i
) ) )  /\  ( Q `  i )  =  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) ) )  ->  ( E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( P `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( Q `  i ) ) )  <-> 
( F `  P
)  <_  ( F `  Q ) ) )
200199anasss 647 . . . 4  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,) +oo )  /\  ( F `  Q
)  e.  ( 0 [,) +oo ) )  /\  A. i  e.  ( 1 ... N
) ( ( P `
 i )  =  ( ( ( 1  -  ( F `  P ) )  x.  ( Z `  i
) )  +  ( ( F `  P
)  x.  ( U `
 i ) ) )  /\  ( Q `
 i )  =  ( ( ( 1  -  ( F `  Q ) )  x.  ( Z `  i
) )  +  ( ( F `  Q
)  x.  ( U `
 i ) ) ) ) ) )  ->  ( E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( P `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( Q `  i ) ) )  <-> 
( F `  P
)  <_  ( F `  Q ) ) )
20118, 200sylan2b 475 . . 3  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( P `  i
)  =  ( ( ( 1  -  ( F `  P )
)  x.  ( Z `
 i ) )  +  ( ( F `
 P )  x.  ( U `  i
) ) ) )  /\  ( ( F `
 Q )  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N
) ( Q `  i )  =  ( ( ( 1  -  ( F `  Q
) )  x.  ( Z `  i )
)  +  ( ( F `  Q )  x.  ( U `  i ) ) ) ) ) )  -> 
( E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( P `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( Q `  i ) ) )  <-> 
( F `  P
)  <_  ( F `  Q ) ) )
20214, 201syldan 470 . 2  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  ( P  e.  D  /\  Q  e.  D )
)  ->  ( E. t  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( P `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  ( Q `  i )
) )  <->  ( F `  P )  <_  ( F `  Q )
) )
20310, 202bitrd 253 1  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  ( P  e.  D  /\  Q  e.  D )
)  ->  ( P  Btwn  <. Z ,  Q >.  <-> 
( F `  P
)  <_  ( F `  Q ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2606   A.wral 2715   E.wrex 2716   {crab 2719   <.cop 3883   class class class wbr 4292   {copab 4349   ` cfv 5418  (class class class)co 6091   CCcc 9280   RRcr 9281   0cc0 9282   1c1 9283    + caddc 9285    x. cmul 9287   +oocpnf 9415    < clt 9418    <_ cle 9419    - cmin 9595    / cdiv 9993   NNcn 10322   [,)cico 11302   [,]cicc 11303   ...cfz 11437   EEcee 23134    Btwn cbtwn 23135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-er 7101  df-map 7216  df-en 7311  df-dom 7312  df-sdom 7313  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-z 10647  df-uz 10862  df-ico 11306  df-icc 11307  df-fz 11438  df-ee 23137  df-btwn 23138</