Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axcontlem7 Unicode version

Theorem axcontlem7 25813
Description: Lemma for axcont 25819. Given two points in  D, one preceeds the other iff its scaling constant is less than the other point's. (Contributed by Scott Fenton, 18-Jun-2013.)
Hypotheses
Ref Expression
axcontlem7.1  |-  D  =  { p  e.  ( EE `  N )  |  ( U  Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) }
axcontlem7.2  |-  F  =  { <. x ,  t
>.  |  ( x  e.  D  /\  (
t  e.  ( 0 [,)  +oo )  /\  A. i  e.  ( 1 ... N ) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  ( U `  i )
) ) ) ) }
Assertion
Ref Expression
axcontlem7  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  ( P  e.  D  /\  Q  e.  D )
)  ->  ( P  Btwn  <. Z ,  Q >.  <-> 
( F `  P
)  <_  ( F `  Q ) ) )
Distinct variable groups:    t, D, x    i, F, t    i, p, x, N, t    P, i, t, x    Q, i, t, x    U, i, p, t, x    i, Z, p, t, x
Allowed substitution hints:    D( i, p)    P( p)    Q( p)    F( x, p)

Proof of Theorem axcontlem7
StepHypRef Expression
1 axcontlem7.1 . . . . . 6  |-  D  =  { p  e.  ( EE `  N )  |  ( U  Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) }
2 ssrab2 3388 . . . . . 6  |-  { p  e.  ( EE `  N
)  |  ( U 
Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) }  C_  ( EE `  N )
31, 2eqsstri 3338 . . . . 5  |-  D  C_  ( EE `  N )
43sseli 3304 . . . 4  |-  ( P  e.  D  ->  P  e.  ( EE `  N
) )
54ad2antrl 709 . . 3  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  ( P  e.  D  /\  Q  e.  D )
)  ->  P  e.  ( EE `  N ) )
6 simpll2 997 . . 3  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  ( P  e.  D  /\  Q  e.  D )
)  ->  Z  e.  ( EE `  N ) )
73sseli 3304 . . . 4  |-  ( Q  e.  D  ->  Q  e.  ( EE `  N
) )
87ad2antll 710 . . 3  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  ( P  e.  D  /\  Q  e.  D )
)  ->  Q  e.  ( EE `  N ) )
9 brbtwn 25742 . . 3  |-  ( ( P  e.  ( EE
`  N )  /\  Z  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) )  ->  ( P  Btwn  <. Z ,  Q >.  <->  E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( P `  i
)  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( t  x.  ( Q `  i
) ) ) ) )
105, 6, 8, 9syl3anc 1184 . 2  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  ( P  e.  D  /\  Q  e.  D )
)  ->  ( P  Btwn  <. Z ,  Q >.  <->  E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( P `  i
)  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( t  x.  ( Q `  i
) ) ) ) )
11 axcontlem7.2 . . . . 5  |-  F  =  { <. x ,  t
>.  |  ( x  e.  D  /\  (
t  e.  ( 0 [,)  +oo )  /\  A. i  e.  ( 1 ... N ) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  ( U `  i )
) ) ) ) }
121, 11axcontlem6 25812 . . . 4  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  P  e.  D )  ->  (
( F `  P
)  e.  ( 0 [,)  +oo )  /\  A. i  e.  ( 1 ... N ) ( P `  i )  =  ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  i ) )  +  ( ( F `  P )  x.  ( U `  i )
) ) ) )
131, 11axcontlem6 25812 . . . 4  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  Q  e.  D )  ->  (
( F `  Q
)  e.  ( 0 [,)  +oo )  /\  A. i  e.  ( 1 ... N ) ( Q `  i )  =  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) ) )
1412, 13anim12dan 811 . . 3  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  ( P  e.  D  /\  Q  e.  D )
)  ->  ( (
( F `  P
)  e.  ( 0 [,)  +oo )  /\  A. i  e.  ( 1 ... N ) ( P `  i )  =  ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  i ) )  +  ( ( F `  P )  x.  ( U `  i )
) ) )  /\  ( ( F `  Q )  e.  ( 0 [,)  +oo )  /\  A. i  e.  ( 1 ... N ) ( Q `  i
)  =  ( ( ( 1  -  ( F `  Q )
)  x.  ( Z `
 i ) )  +  ( ( F `
 Q )  x.  ( U `  i
) ) ) ) ) )
15 an4 798 . . . . 5  |-  ( ( ( ( F `  P )  e.  ( 0 [,)  +oo )  /\  A. i  e.  ( 1 ... N ) ( P `  i
)  =  ( ( ( 1  -  ( F `  P )
)  x.  ( Z `
 i ) )  +  ( ( F `
 P )  x.  ( U `  i
) ) ) )  /\  ( ( F `
 Q )  e.  ( 0 [,)  +oo )  /\  A. i  e.  ( 1 ... N
) ( Q `  i )  =  ( ( ( 1  -  ( F `  Q
) )  x.  ( Z `  i )
)  +  ( ( F `  Q )  x.  ( U `  i ) ) ) ) )  <->  ( (
( F `  P
)  e.  ( 0 [,)  +oo )  /\  ( F `  Q )  e.  ( 0 [,)  +oo ) )  /\  ( A. i  e.  (
1 ... N ) ( P `  i )  =  ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  i ) )  +  ( ( F `  P )  x.  ( U `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( Q `  i )  =  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) ) ) )
16 r19.26 2798 . . . . . 6  |-  ( A. i  e.  ( 1 ... N ) ( ( P `  i
)  =  ( ( ( 1  -  ( F `  P )
)  x.  ( Z `
 i ) )  +  ( ( F `
 P )  x.  ( U `  i
) ) )  /\  ( Q `  i )  =  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) )  <->  ( A. i  e.  ( 1 ... N ) ( P `  i )  =  ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  i ) )  +  ( ( F `  P )  x.  ( U `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( Q `  i )  =  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) ) )
1716anbi2i 676 . . . . 5  |-  ( ( ( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  A. i  e.  ( 1 ... N ) ( ( P `  i
)  =  ( ( ( 1  -  ( F `  P )
)  x.  ( Z `
 i ) )  +  ( ( F `
 P )  x.  ( U `  i
) ) )  /\  ( Q `  i )  =  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) ) )  <-> 
( ( ( F `
 P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q )  e.  ( 0 [,)  +oo )
)  /\  ( A. i  e.  ( 1 ... N ) ( P `  i )  =  ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  i ) )  +  ( ( F `  P )  x.  ( U `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( Q `  i )  =  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) ) ) )
1815, 17bitr4i 244 . . . 4  |-  ( ( ( ( F `  P )  e.  ( 0 [,)  +oo )  /\  A. i  e.  ( 1 ... N ) ( P `  i
)  =  ( ( ( 1  -  ( F `  P )
)  x.  ( Z `
 i ) )  +  ( ( F `
 P )  x.  ( U `  i
) ) ) )  /\  ( ( F `
 Q )  e.  ( 0 [,)  +oo )  /\  A. i  e.  ( 1 ... N
) ( Q `  i )  =  ( ( ( 1  -  ( F `  Q
) )  x.  ( Z `  i )
)  +  ( ( F `  Q )  x.  ( U `  i ) ) ) ) )  <->  ( (
( F `  P
)  e.  ( 0 [,)  +oo )  /\  ( F `  Q )  e.  ( 0 [,)  +oo ) )  /\  A. i  e.  ( 1 ... N ) ( ( P `  i
)  =  ( ( ( 1  -  ( F `  P )
)  x.  ( Z `
 i ) )  +  ( ( F `
 P )  x.  ( U `  i
) ) )  /\  ( Q `  i )  =  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) ) ) )
19 id 20 . . . . . . . . . 10  |-  ( ( P `  i )  =  ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  i ) )  +  ( ( F `  P )  x.  ( U `  i )
) )  ->  ( P `  i )  =  ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  i ) )  +  ( ( F `  P )  x.  ( U `  i )
) ) )
20 oveq2 6048 . . . . . . . . . . 11  |-  ( ( Q `  i )  =  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) )  ->  (
t  x.  ( Q `
 i ) )  =  ( t  x.  ( ( ( 1  -  ( F `  Q ) )  x.  ( Z `  i
) )  +  ( ( F `  Q
)  x.  ( U `
 i ) ) ) ) )
2120oveq2d 6056 . . . . . . . . . 10  |-  ( ( Q `  i )  =  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) )  ->  (
( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( Q `  i ) ) )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  (
( ( 1  -  ( F `  Q
) )  x.  ( Z `  i )
)  +  ( ( F `  Q )  x.  ( U `  i ) ) ) ) ) )
2219, 21eqeqan12d 2419 . . . . . . . . 9  |-  ( ( ( P `  i
)  =  ( ( ( 1  -  ( F `  P )
)  x.  ( Z `
 i ) )  +  ( ( F `
 P )  x.  ( U `  i
) ) )  /\  ( Q `  i )  =  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) )  -> 
( ( P `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( Q `  i ) ) )  <-> 
( ( ( 1  -  ( F `  P ) )  x.  ( Z `  i
) )  +  ( ( F `  P
)  x.  ( U `
 i ) ) )  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( t  x.  ( ( ( 1  -  ( F `  Q ) )  x.  ( Z `  i
) )  +  ( ( F `  Q
)  x.  ( U `
 i ) ) ) ) ) ) )
2322ralimi 2741 . . . . . . . 8  |-  ( A. i  e.  ( 1 ... N ) ( ( P `  i
)  =  ( ( ( 1  -  ( F `  P )
)  x.  ( Z `
 i ) )  +  ( ( F `
 P )  x.  ( U `  i
) ) )  /\  ( Q `  i )  =  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) )  ->  A. i  e.  (
1 ... N ) ( ( P `  i
)  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( t  x.  ( Q `  i
) ) )  <->  ( (
( 1  -  ( F `  P )
)  x.  ( Z `
 i ) )  +  ( ( F `
 P )  x.  ( U `  i
) ) )  =  ( ( ( 1  -  t )  x.  ( Z `  i
) )  +  ( t  x.  ( ( ( 1  -  ( F `  Q )
)  x.  ( Z `
 i ) )  +  ( ( F `
 Q )  x.  ( U `  i
) ) ) ) ) ) )
24 ralbi 2802 . . . . . . . 8  |-  ( A. i  e.  ( 1 ... N ) ( ( P `  i
)  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( t  x.  ( Q `  i
) ) )  <->  ( (
( 1  -  ( F `  P )
)  x.  ( Z `
 i ) )  +  ( ( F `
 P )  x.  ( U `  i
) ) )  =  ( ( ( 1  -  t )  x.  ( Z `  i
) )  +  ( t  x.  ( ( ( 1  -  ( F `  Q )
)  x.  ( Z `
 i ) )  +  ( ( F `
 Q )  x.  ( U `  i
) ) ) ) ) )  ->  ( A. i  e.  (
1 ... N ) ( P `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  ( Q `  i )
) )  <->  A. i  e.  ( 1 ... N
) ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  i ) )  +  ( ( F `  P )  x.  ( U `  i )
) )  =  ( ( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) ) ) ) )
2523, 24syl 16 . . . . . . 7  |-  ( A. i  e.  ( 1 ... N ) ( ( P `  i
)  =  ( ( ( 1  -  ( F `  P )
)  x.  ( Z `
 i ) )  +  ( ( F `
 P )  x.  ( U `  i
) ) )  /\  ( Q `  i )  =  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) )  -> 
( A. i  e.  ( 1 ... N
) ( P `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( Q `  i ) ) )  <->  A. i  e.  (
1 ... N ) ( ( ( 1  -  ( F `  P
) )  x.  ( Z `  i )
)  +  ( ( F `  P )  x.  ( U `  i ) ) )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  (
( ( 1  -  ( F `  Q
) )  x.  ( Z `  i )
)  +  ( ( F `  Q )  x.  ( U `  i ) ) ) ) ) ) )
2625rexbidv 2687 . . . . . 6  |-  ( A. i  e.  ( 1 ... N ) ( ( P `  i
)  =  ( ( ( 1  -  ( F `  P )
)  x.  ( Z `
 i ) )  +  ( ( F `
 P )  x.  ( U `  i
) ) )  /\  ( Q `  i )  =  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) )  -> 
( E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( P `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( Q `  i ) ) )  <->  E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( ( 1  -  ( F `  P ) )  x.  ( Z `  i
) )  +  ( ( F `  P
)  x.  ( U `
 i ) ) )  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( t  x.  ( ( ( 1  -  ( F `  Q ) )  x.  ( Z `  i
) )  +  ( ( F `  Q
)  x.  ( U `
 i ) ) ) ) ) ) )
27 simpll2 997 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  Z  e.  ( EE `  N ) )
28 fveecn 25745 . . . . . . . . . . . . 13  |-  ( ( Z  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( Z `  i )  e.  CC )
2927, 28sylan 458 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( Z `  i )  e.  CC )
30 simpll3 998 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  U  e.  ( EE `  N ) )
31 fveecn 25745 . . . . . . . . . . . . 13  |-  ( ( U  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( U `  i )  e.  CC )
3230, 31sylan 458 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( U `  i )  e.  CC )
33 0re 9047 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR
34 1re 9046 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR
3533, 34elicc2i 10932 . . . . . . . . . . . . . . . 16  |-  ( t  e.  ( 0 [,] 1 )  <->  ( t  e.  RR  /\  0  <_ 
t  /\  t  <_  1 ) )
3635simp1bi 972 . . . . . . . . . . . . . . 15  |-  ( t  e.  ( 0 [,] 1 )  ->  t  e.  RR )
3736recnd 9070 . . . . . . . . . . . . . 14  |-  ( t  e.  ( 0 [,] 1 )  ->  t  e.  CC )
3837ad2antll 710 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  t  e.  CC )
3938adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  /\  i  e.  ( 1 ... N
) )  ->  t  e.  CC )
40 elrege0 10963 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  P )  e.  ( 0 [,) 
+oo )  <->  ( ( F `  P )  e.  RR  /\  0  <_ 
( F `  P
) ) )
4140simplbi 447 . . . . . . . . . . . . . . . 16  |-  ( ( F `  P )  e.  ( 0 [,) 
+oo )  ->  ( F `  P )  e.  RR )
4241recnd 9070 . . . . . . . . . . . . . . 15  |-  ( ( F `  P )  e.  ( 0 [,) 
+oo )  ->  ( F `  P )  e.  CC )
4342adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( F `  P
)  e.  ( 0 [,)  +oo )  /\  ( F `  Q )  e.  ( 0 [,)  +oo ) )  ->  ( F `  P )  e.  CC )
4443ad2antrl 709 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  ( F `  P )  e.  CC )
4544adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( F `  P )  e.  CC )
46 elrege0 10963 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  Q )  e.  ( 0 [,) 
+oo )  <->  ( ( F `  Q )  e.  RR  /\  0  <_ 
( F `  Q
) ) )
4746simplbi 447 . . . . . . . . . . . . . . . 16  |-  ( ( F `  Q )  e.  ( 0 [,) 
+oo )  ->  ( F `  Q )  e.  RR )
4847recnd 9070 . . . . . . . . . . . . . . 15  |-  ( ( F `  Q )  e.  ( 0 [,) 
+oo )  ->  ( F `  Q )  e.  CC )
4948adantl 453 . . . . . . . . . . . . . 14  |-  ( ( ( F `  P
)  e.  ( 0 [,)  +oo )  /\  ( F `  Q )  e.  ( 0 [,)  +oo ) )  ->  ( F `  Q )  e.  CC )
5049ad2antrl 709 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  ( F `  Q )  e.  CC )
5150adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( F `  Q )  e.  CC )
52 ax-1cn 9004 . . . . . . . . . . . . . . . . 17  |-  1  e.  CC
53 simpr1 963 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
t  e.  CC )
54 simpr3 965 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( F `  Q
)  e.  CC )
5553, 54mulcld 9064 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( t  x.  ( F `  Q )
)  e.  CC )
56 subcl 9261 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  e.  CC  /\  ( t  x.  ( F `  Q )
)  e.  CC )  ->  ( 1  -  ( t  x.  ( F `  Q )
) )  e.  CC )
5752, 55, 56sylancr 645 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( 1  -  (
t  x.  ( F `
 Q ) ) )  e.  CC )
58 subcl 9261 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  e.  CC  /\  ( F `  P )  e.  CC )  -> 
( 1  -  ( F `  P )
)  e.  CC )
5952, 58mpan 652 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  P )  e.  CC  ->  (
1  -  ( F `
 P ) )  e.  CC )
60593ad2ant2 979 . . . . . . . . . . . . . . . . 17  |-  ( ( t  e.  CC  /\  ( F `  P )  e.  CC  /\  ( F `  Q )  e.  CC )  ->  (
1  -  ( F `
 P ) )  e.  CC )
6160adantl 453 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( 1  -  ( F `  P )
)  e.  CC )
62 simpll 731 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( Z `  i
)  e.  CC )
6357, 61, 62subdird 9446 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( 1  -  ( t  x.  ( F `  Q
) ) )  -  ( 1  -  ( F `  P )
) )  x.  ( Z `  i )
)  =  ( ( ( 1  -  (
t  x.  ( F `
 Q ) ) )  x.  ( Z `
 i ) )  -  ( ( 1  -  ( F `  P ) )  x.  ( Z `  i
) ) ) )
64 simpr2 964 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( F `  P
)  e.  CC )
65 nnncan1 9293 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  e.  CC  /\  ( t  x.  ( F `  Q )
)  e.  CC  /\  ( F `  P )  e.  CC )  -> 
( ( 1  -  ( t  x.  ( F `  Q )
) )  -  (
1  -  ( F `
 P ) ) )  =  ( ( F `  P )  -  ( t  x.  ( F `  Q
) ) ) )
6652, 65mp3an1 1266 . . . . . . . . . . . . . . . . 17  |-  ( ( ( t  x.  ( F `  Q )
)  e.  CC  /\  ( F `  P )  e.  CC )  -> 
( ( 1  -  ( t  x.  ( F `  Q )
) )  -  (
1  -  ( F `
 P ) ) )  =  ( ( F `  P )  -  ( t  x.  ( F `  Q
) ) ) )
6755, 64, 66syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( 1  -  ( t  x.  ( F `  Q )
) )  -  (
1  -  ( F `
 P ) ) )  =  ( ( F `  P )  -  ( t  x.  ( F `  Q
) ) ) )
6867oveq1d 6055 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( 1  -  ( t  x.  ( F `  Q
) ) )  -  ( 1  -  ( F `  P )
) )  x.  ( Z `  i )
)  =  ( ( ( F `  P
)  -  ( t  x.  ( F `  Q ) ) )  x.  ( Z `  i ) ) )
69 subdi 9423 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( t  e.  CC  /\  1  e.  CC  /\  ( F `  Q )  e.  CC )  ->  (
t  x.  ( 1  -  ( F `  Q ) ) )  =  ( ( t  x.  1 )  -  ( t  x.  ( F `  Q )
) ) )
7052, 69mp3an2 1267 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( t  e.  CC  /\  ( F `  Q )  e.  CC )  -> 
( t  x.  (
1  -  ( F `
 Q ) ) )  =  ( ( t  x.  1 )  -  ( t  x.  ( F `  Q
) ) ) )
71 mulid1 9044 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( t  e.  CC  ->  (
t  x.  1 )  =  t )
7271adantr 452 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( t  e.  CC  /\  ( F `  Q )  e.  CC )  -> 
( t  x.  1 )  =  t )
7372oveq1d 6055 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( t  e.  CC  /\  ( F `  Q )  e.  CC )  -> 
( ( t  x.  1 )  -  (
t  x.  ( F `
 Q ) ) )  =  ( t  -  ( t  x.  ( F `  Q
) ) ) )
7470, 73eqtrd 2436 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( t  e.  CC  /\  ( F `  Q )  e.  CC )  -> 
( t  x.  (
1  -  ( F `
 Q ) ) )  =  ( t  -  ( t  x.  ( F `  Q
) ) ) )
7553, 54, 74syl2anc 643 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( t  x.  (
1  -  ( F `
 Q ) ) )  =  ( t  -  ( t  x.  ( F `  Q
) ) ) )
7675oveq2d 6056 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( 1  -  t )  +  ( t  x.  ( 1  -  ( F `  Q ) ) ) )  =  ( ( 1  -  t )  +  ( t  -  ( t  x.  ( F `  Q )
) ) ) )
77 npncan 9279 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1  e.  CC  /\  t  e.  CC  /\  (
t  x.  ( F `
 Q ) )  e.  CC )  -> 
( ( 1  -  t )  +  ( t  -  ( t  x.  ( F `  Q ) ) ) )  =  ( 1  -  ( t  x.  ( F `  Q
) ) ) )
7852, 77mp3an1 1266 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( t  e.  CC  /\  ( t  x.  ( F `  Q )
)  e.  CC )  ->  ( ( 1  -  t )  +  ( t  -  (
t  x.  ( F `
 Q ) ) ) )  =  ( 1  -  ( t  x.  ( F `  Q ) ) ) )
7953, 55, 78syl2anc 643 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( 1  -  t )  +  ( t  -  ( t  x.  ( F `  Q ) ) ) )  =  ( 1  -  ( t  x.  ( F `  Q
) ) ) )
8076, 79eqtr2d 2437 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( 1  -  (
t  x.  ( F `
 Q ) ) )  =  ( ( 1  -  t )  +  ( t  x.  ( 1  -  ( F `  Q )
) ) ) )
8180oveq1d 6055 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( 1  -  ( t  x.  ( F `  Q )
) )  x.  ( Z `  i )
)  =  ( ( ( 1  -  t
)  +  ( t  x.  ( 1  -  ( F `  Q
) ) ) )  x.  ( Z `  i ) ) )
82 subcl 9261 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1  e.  CC  /\  t  e.  CC )  ->  ( 1  -  t
)  e.  CC )
8352, 82mpan 652 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  e.  CC  ->  (
1  -  t )  e.  CC )
84833ad2ant1 978 . . . . . . . . . . . . . . . . . . 19  |-  ( ( t  e.  CC  /\  ( F `  P )  e.  CC  /\  ( F `  Q )  e.  CC )  ->  (
1  -  t )  e.  CC )
8584adantl 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( 1  -  t
)  e.  CC )
86 subcl 9261 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1  e.  CC  /\  ( F `  Q )  e.  CC )  -> 
( 1  -  ( F `  Q )
)  e.  CC )
8752, 86mpan 652 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F `  Q )  e.  CC  ->  (
1  -  ( F `
 Q ) )  e.  CC )
88873ad2ant3 980 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( t  e.  CC  /\  ( F `  P )  e.  CC  /\  ( F `  Q )  e.  CC )  ->  (
1  -  ( F `
 Q ) )  e.  CC )
8988adantl 453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( 1  -  ( F `  Q )
)  e.  CC )
9053, 89mulcld 9064 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( t  x.  (
1  -  ( F `
 Q ) ) )  e.  CC )
9185, 90, 62adddird 9069 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( 1  -  t )  +  ( t  x.  (
1  -  ( F `
 Q ) ) ) )  x.  ( Z `  i )
)  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( ( t  x.  ( 1  -  ( F `  Q
) ) )  x.  ( Z `  i
) ) ) )
9253, 89, 62mulassd 9067 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( t  x.  ( 1  -  ( F `  Q )
) )  x.  ( Z `  i )
)  =  ( t  x.  ( ( 1  -  ( F `  Q ) )  x.  ( Z `  i
) ) ) )
9392oveq2d 6056 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( 1  -  t )  x.  ( Z `  i
) )  +  ( ( t  x.  (
1  -  ( F `
 Q ) ) )  x.  ( Z `
 i ) ) )  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( t  x.  ( ( 1  -  ( F `  Q
) )  x.  ( Z `  i )
) ) ) )
9481, 91, 933eqtrd 2440 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( 1  -  ( t  x.  ( F `  Q )
) )  x.  ( Z `  i )
)  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( t  x.  ( ( 1  -  ( F `  Q
) )  x.  ( Z `  i )
) ) ) )
9594oveq1d 6055 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( 1  -  ( t  x.  ( F `  Q
) ) )  x.  ( Z `  i
) )  -  (
( 1  -  ( F `  P )
)  x.  ( Z `
 i ) ) )  =  ( ( ( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( ( 1  -  ( F `  Q ) )  x.  ( Z `  i
) ) ) )  -  ( ( 1  -  ( F `  P ) )  x.  ( Z `  i
) ) ) )
9663, 68, 953eqtr3d 2444 . . . . . . . . . . . . . 14  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( F `
 P )  -  ( t  x.  ( F `  Q )
) )  x.  ( Z `  i )
)  =  ( ( ( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( ( 1  -  ( F `  Q ) )  x.  ( Z `  i
) ) ) )  -  ( ( 1  -  ( F `  P ) )  x.  ( Z `  i
) ) ) )
97 simplr 732 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( U `  i
)  e.  CC )
9864, 55, 97subdird 9446 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( F `
 P )  -  ( t  x.  ( F `  Q )
) )  x.  ( U `  i )
)  =  ( ( ( F `  P
)  x.  ( U `
 i ) )  -  ( ( t  x.  ( F `  Q ) )  x.  ( U `  i
) ) ) )
9953, 54, 97mulassd 9067 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( t  x.  ( F `  Q
) )  x.  ( U `  i )
)  =  ( t  x.  ( ( F `
 Q )  x.  ( U `  i
) ) ) )
10099oveq2d 6056 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( F `
 P )  x.  ( U `  i
) )  -  (
( t  x.  ( F `  Q )
)  x.  ( U `
 i ) ) )  =  ( ( ( F `  P
)  x.  ( U `
 i ) )  -  ( t  x.  ( ( F `  Q )  x.  ( U `  i )
) ) ) )
10198, 100eqtrd 2436 . . . . . . . . . . . . . 14  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( F `
 P )  -  ( t  x.  ( F `  Q )
) )  x.  ( U `  i )
)  =  ( ( ( F `  P
)  x.  ( U `
 i ) )  -  ( t  x.  ( ( F `  Q )  x.  ( U `  i )
) ) ) )
10296, 101eqeq12d 2418 . . . . . . . . . . . . 13  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( ( F `  P )  -  ( t  x.  ( F `  Q
) ) )  x.  ( Z `  i
) )  =  ( ( ( F `  P )  -  (
t  x.  ( F `
 Q ) ) )  x.  ( U `
 i ) )  <-> 
( ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  (
( 1  -  ( F `  Q )
)  x.  ( Z `
 i ) ) ) )  -  (
( 1  -  ( F `  P )
)  x.  ( Z `
 i ) ) )  =  ( ( ( F `  P
)  x.  ( U `
 i ) )  -  ( t  x.  ( ( F `  Q )  x.  ( U `  i )
) ) ) ) )
10361, 62mulcld 9064 . . . . . . . . . . . . . 14  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( 1  -  ( F `  P
) )  x.  ( Z `  i )
)  e.  CC )
10464, 97mulcld 9064 . . . . . . . . . . . . . 14  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( F `  P )  x.  ( U `  i )
)  e.  CC )
10585, 62mulcld 9064 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( 1  -  t )  x.  ( Z `  i )
)  e.  CC )
10689, 62mulcld 9064 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( 1  -  ( F `  Q
) )  x.  ( Z `  i )
)  e.  CC )
10753, 106mulcld 9064 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( t  x.  (
( 1  -  ( F `  Q )
)  x.  ( Z `
 i ) ) )  e.  CC )
108105, 107addcld 9063 . . . . . . . . . . . . . 14  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( 1  -  t )  x.  ( Z `  i
) )  +  ( t  x.  ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) ) ) )  e.  CC )
10954, 97mulcld 9064 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( F `  Q )  x.  ( U `  i )
)  e.  CC )
11053, 109mulcld 9064 . . . . . . . . . . . . . 14  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( t  x.  (
( F `  Q
)  x.  ( U `
 i ) ) )  e.  CC )
111103, 104, 108, 110addsubeq4d 9418 . . . . . . . . . . . . 13  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  i ) )  +  ( ( F `  P )  x.  ( U `  i )
) )  =  ( ( ( ( 1  -  t )  x.  ( Z `  i
) )  +  ( t  x.  ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) ) ) )  +  ( t  x.  ( ( F `
 Q )  x.  ( U `  i
) ) ) )  <-> 
( ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  (
( 1  -  ( F `  Q )
)  x.  ( Z `
 i ) ) ) )  -  (
( 1  -  ( F `  P )
)  x.  ( Z `
 i ) ) )  =  ( ( ( F `  P
)  x.  ( U `
 i ) )  -  ( t  x.  ( ( F `  Q )  x.  ( U `  i )
) ) ) ) )
112105, 107, 110addassd 9066 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  (
( 1  -  ( F `  Q )
)  x.  ( Z `
 i ) ) ) )  +  ( t  x.  ( ( F `  Q )  x.  ( U `  i ) ) ) )  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( ( t  x.  ( ( 1  -  ( F `  Q ) )  x.  ( Z `  i
) ) )  +  ( t  x.  (
( F `  Q
)  x.  ( U `
 i ) ) ) ) ) )
11353, 106, 109adddid 9068 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( t  x.  (
( ( 1  -  ( F `  Q
) )  x.  ( Z `  i )
)  +  ( ( F `  Q )  x.  ( U `  i ) ) ) )  =  ( ( t  x.  ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) ) )  +  ( t  x.  ( ( F `  Q )  x.  ( U `  i )
) ) ) )
114113oveq2d 6056 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( 1  -  t )  x.  ( Z `  i
) )  +  ( t  x.  ( ( ( 1  -  ( F `  Q )
)  x.  ( Z `
 i ) )  +  ( ( F `
 Q )  x.  ( U `  i
) ) ) ) )  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( ( t  x.  ( ( 1  -  ( F `  Q ) )  x.  ( Z `  i
) ) )  +  ( t  x.  (
( F `  Q
)  x.  ( U `
 i ) ) ) ) ) )
115112, 114eqtr4d 2439 . . . . . . . . . . . . . 14  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  (
( 1  -  ( F `  Q )
)  x.  ( Z `
 i ) ) ) )  +  ( t  x.  ( ( F `  Q )  x.  ( U `  i ) ) ) )  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( t  x.  ( ( ( 1  -  ( F `  Q ) )  x.  ( Z `  i
) )  +  ( ( F `  Q
)  x.  ( U `
 i ) ) ) ) ) )
116115eqeq2d 2415 . . . . . . . . . . . . 13  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  i ) )  +  ( ( F `  P )  x.  ( U `  i )
) )  =  ( ( ( ( 1  -  t )  x.  ( Z `  i
) )  +  ( t  x.  ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) ) ) )  +  ( t  x.  ( ( F `
 Q )  x.  ( U `  i
) ) ) )  <-> 
( ( ( 1  -  ( F `  P ) )  x.  ( Z `  i
) )  +  ( ( F `  P
)  x.  ( U `
 i ) ) )  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( t  x.  ( ( ( 1  -  ( F `  Q ) )  x.  ( Z `  i
) )  +  ( ( F `  Q
)  x.  ( U `
 i ) ) ) ) ) ) )
117102, 111, 1163bitr2rd 274 . . . . . . . . . . . 12  |-  ( ( ( ( Z `  i )  e.  CC  /\  ( U `  i
)  e.  CC )  /\  ( t  e.  CC  /\  ( F `
 P )  e.  CC  /\  ( F `
 Q )  e.  CC ) )  -> 
( ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  i ) )  +  ( ( F `  P )  x.  ( U `  i )
) )  =  ( ( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) ) )  <-> 
( ( ( F `
 P )  -  ( t  x.  ( F `  Q )
) )  x.  ( Z `  i )
)  =  ( ( ( F `  P
)  -  ( t  x.  ( F `  Q ) ) )  x.  ( U `  i ) ) ) )
11829, 32, 39, 45, 51, 117syl23anc 1191 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( 1  -  ( F `  P ) )  x.  ( Z `  i
) )  +  ( ( F `  P
)  x.  ( U `
 i ) ) )  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( t  x.  ( ( ( 1  -  ( F `  Q ) )  x.  ( Z `  i
) )  +  ( ( F `  Q
)  x.  ( U `
 i ) ) ) ) )  <->  ( (
( F `  P
)  -  ( t  x.  ( F `  Q ) ) )  x.  ( Z `  i ) )  =  ( ( ( F `
 P )  -  ( t  x.  ( F `  Q )
) )  x.  ( U `  i )
) ) )
119118ralbidva 2682 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  ( A. i  e.  ( 1 ... N ) ( ( ( 1  -  ( F `  P
) )  x.  ( Z `  i )
)  +  ( ( F `  P )  x.  ( U `  i ) ) )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  (
( ( 1  -  ( F `  Q
) )  x.  ( Z `  i )
)  +  ( ( F `  Q )  x.  ( U `  i ) ) ) ) )  <->  A. i  e.  ( 1 ... N
) ( ( ( F `  P )  -  ( t  x.  ( F `  Q
) ) )  x.  ( Z `  i
) )  =  ( ( ( F `  P )  -  (
t  x.  ( F `
 Q ) ) )  x.  ( U `
 i ) ) ) )
12039, 51mulcld 9064 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
t  x.  ( F `
 Q ) )  e.  CC )
12145, 120subcld 9367 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( F `  P
)  -  ( t  x.  ( F `  Q ) ) )  e.  CC )
122 mulcan1g 25142 . . . . . . . . . . . 12  |-  ( ( ( ( F `  P )  -  (
t  x.  ( F `
 Q ) ) )  e.  CC  /\  ( Z `  i )  e.  CC  /\  ( U `  i )  e.  CC )  ->  (
( ( ( F `
 P )  -  ( t  x.  ( F `  Q )
) )  x.  ( Z `  i )
)  =  ( ( ( F `  P
)  -  ( t  x.  ( F `  Q ) ) )  x.  ( U `  i ) )  <->  ( (
( F `  P
)  -  ( t  x.  ( F `  Q ) ) )  =  0  \/  ( Z `  i )  =  ( U `  i ) ) ) )
123121, 29, 32, 122syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( F `
 P )  -  ( t  x.  ( F `  Q )
) )  x.  ( Z `  i )
)  =  ( ( ( F `  P
)  -  ( t  x.  ( F `  Q ) ) )  x.  ( U `  i ) )  <->  ( (
( F `  P
)  -  ( t  x.  ( F `  Q ) ) )  =  0  \/  ( Z `  i )  =  ( U `  i ) ) ) )
124123ralbidva 2682 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  ( A. i  e.  ( 1 ... N ) ( ( ( F `  P )  -  (
t  x.  ( F `
 Q ) ) )  x.  ( Z `
 i ) )  =  ( ( ( F `  P )  -  ( t  x.  ( F `  Q
) ) )  x.  ( U `  i
) )  <->  A. i  e.  ( 1 ... N
) ( ( ( F `  P )  -  ( t  x.  ( F `  Q
) ) )  =  0  \/  ( Z `
 i )  =  ( U `  i
) ) ) )
125 r19.32v 2814 . . . . . . . . . . 11  |-  ( A. i  e.  ( 1 ... N ) ( ( ( F `  P )  -  (
t  x.  ( F `
 Q ) ) )  =  0  \/  ( Z `  i
)  =  ( U `
 i ) )  <-> 
( ( ( F `
 P )  -  ( t  x.  ( F `  Q )
) )  =  0  \/  A. i  e.  ( 1 ... N
) ( Z `  i )  =  ( U `  i ) ) )
126 simplr 732 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  Z  =/=  U )
127126neneqd 2583 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  -.  Z  =  U )
128 biorf 395 . . . . . . . . . . . . . 14  |-  ( -.  Z  =  U  -> 
( ( ( F `
 P )  -  ( t  x.  ( F `  Q )
) )  =  0  <-> 
( Z  =  U  \/  ( ( F `
 P )  -  ( t  x.  ( F `  Q )
) )  =  0 ) ) )
129 orcom 377 . . . . . . . . . . . . . 14  |-  ( ( Z  =  U  \/  ( ( F `  P )  -  (
t  x.  ( F `
 Q ) ) )  =  0 )  <-> 
( ( ( F `
 P )  -  ( t  x.  ( F `  Q )
) )  =  0  \/  Z  =  U ) )
130128, 129syl6bb 253 . . . . . . . . . . . . 13  |-  ( -.  Z  =  U  -> 
( ( ( F `
 P )  -  ( t  x.  ( F `  Q )
) )  =  0  <-> 
( ( ( F `
 P )  -  ( t  x.  ( F `  Q )
) )  =  0  \/  Z  =  U ) ) )
131127, 130syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  ( (
( F `  P
)  -  ( t  x.  ( F `  Q ) ) )  =  0  <->  ( (
( F `  P
)  -  ( t  x.  ( F `  Q ) ) )  =  0  \/  Z  =  U ) ) )
13238, 50mulcld 9064 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  ( t  x.  ( F `  Q
) )  e.  CC )
13344, 132subeq0ad 9377 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  ( (
( F `  P
)  -  ( t  x.  ( F `  Q ) ) )  =  0  <->  ( F `  P )  =  ( t  x.  ( F `
 Q ) ) ) )
134 eqeefv 25746 . . . . . . . . . . . . . . . 16  |-  ( ( Z  e.  ( EE
`  N )  /\  U  e.  ( EE `  N ) )  -> 
( Z  =  U  <->  A. i  e.  (
1 ... N ) ( Z `  i )  =  ( U `  i ) ) )
1351343adant1 975 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  Z  e.  ( EE `  N )  /\  U  e.  ( EE `  N
) )  ->  ( Z  =  U  <->  A. i  e.  ( 1 ... N
) ( Z `  i )  =  ( U `  i ) ) )
136135adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  Z  e.  ( EE
`  N )  /\  U  e.  ( EE `  N ) )  /\  Z  =/=  U )  -> 
( Z  =  U  <->  A. i  e.  (
1 ... N ) ( Z `  i )  =  ( U `  i ) ) )
137136adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  ( Z  =  U  <->  A. i  e.  ( 1 ... N ) ( Z `  i
)  =  ( U `
 i ) ) )
138137orbi2d 683 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  ( (
( ( F `  P )  -  (
t  x.  ( F `
 Q ) ) )  =  0  \/  Z  =  U )  <-> 
( ( ( F `
 P )  -  ( t  x.  ( F `  Q )
) )  =  0  \/  A. i  e.  ( 1 ... N
) ( Z `  i )  =  ( U `  i ) ) ) )
139131, 133, 1383bitr3rd 276 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  ( (
( ( F `  P )  -  (
t  x.  ( F `
 Q ) ) )  =  0  \/ 
A. i  e.  ( 1 ... N ) ( Z `  i
)  =  ( U `
 i ) )  <-> 
( F `  P
)  =  ( t  x.  ( F `  Q ) ) ) )
140125, 139syl5bb 249 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  ( A. i  e.  ( 1 ... N ) ( ( ( F `  P )  -  (
t  x.  ( F `
 Q ) ) )  =  0  \/  ( Z `  i
)  =  ( U `
 i ) )  <-> 
( F `  P
)  =  ( t  x.  ( F `  Q ) ) ) )
141119, 124, 1403bitrd 271 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  ( A. i  e.  ( 1 ... N ) ( ( ( 1  -  ( F `  P
) )  x.  ( Z `  i )
)  +  ( ( F `  P )  x.  ( U `  i ) ) )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  (
( ( 1  -  ( F `  Q
) )  x.  ( Z `  i )
)  +  ( ( F `  Q )  x.  ( U `  i ) ) ) ) )  <->  ( F `  P )  =  ( t  x.  ( F `
 Q ) ) ) )
142141anassrs 630 . . . . . . . 8  |-  ( ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( F `  P
)  e.  ( 0 [,)  +oo )  /\  ( F `  Q )  e.  ( 0 [,)  +oo ) ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( A. i  e.  ( 1 ... N
) ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  i ) )  +  ( ( F `  P )  x.  ( U `  i )
) )  =  ( ( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) ) )  <-> 
( F `  P
)  =  ( t  x.  ( F `  Q ) ) ) )
143142rexbidva 2683 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( F `  P
)  e.  ( 0 [,)  +oo )  /\  ( F `  Q )  e.  ( 0 [,)  +oo ) ) )  -> 
( E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  i ) )  +  ( ( F `  P )  x.  ( U `  i )
) )  =  ( ( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) ) )  <->  E. t  e.  (
0 [,] 1 ) ( F `  P
)  =  ( t  x.  ( F `  Q ) ) ) )
14436adantl 453 . . . . . . . . . . . . 13  |-  ( ( ( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  t  e.  RR )
14534a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  1  e.  RR )
14646biimpi 187 . . . . . . . . . . . . . 14  |-  ( ( F `  Q )  e.  ( 0 [,) 
+oo )  ->  (
( F `  Q
)  e.  RR  /\  0  <_  ( F `  Q ) ) )
147146ad2antlr 708 . . . . . . . . . . . . 13  |-  ( ( ( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( F `
 Q )  e.  RR  /\  0  <_ 
( F `  Q
) ) )
14835simp3bi 974 . . . . . . . . . . . . . 14  |-  ( t  e.  ( 0 [,] 1 )  ->  t  <_  1 )
149148adantl 453 . . . . . . . . . . . . 13  |-  ( ( ( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  t  <_  1
)
150 lemul1a 9820 . . . . . . . . . . . . 13  |-  ( ( ( t  e.  RR  /\  1  e.  RR  /\  ( ( F `  Q )  e.  RR  /\  0  <_  ( F `  Q ) ) )  /\  t  <_  1
)  ->  ( t  x.  ( F `  Q
) )  <_  (
1  x.  ( F `
 Q ) ) )
151144, 145, 147, 149, 150syl31anc 1187 . . . . . . . . . . . 12  |-  ( ( ( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( t  x.  ( F `  Q
) )  <_  (
1  x.  ( F `
 Q ) ) )
15248ad2antlr 708 . . . . . . . . . . . . 13  |-  ( ( ( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( F `  Q )  e.  CC )
153152mulid2d 9062 . . . . . . . . . . . 12  |-  ( ( ( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( 1  x.  ( F `  Q
) )  =  ( F `  Q ) )
154151, 153breqtrd 4196 . . . . . . . . . . 11  |-  ( ( ( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( t  x.  ( F `  Q
) )  <_  ( F `  Q )
)
155 breq1 4175 . . . . . . . . . . 11  |-  ( ( F `  P )  =  ( t  x.  ( F `  Q
) )  ->  (
( F `  P
)  <_  ( F `  Q )  <->  ( t  x.  ( F `  Q
) )  <_  ( F `  Q )
) )
156154, 155syl5ibrcom 214 . . . . . . . . . 10  |-  ( ( ( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( F `
 P )  =  ( t  x.  ( F `  Q )
)  ->  ( F `  P )  <_  ( F `  Q )
) )
157156rexlimdva 2790 . . . . . . . . 9  |-  ( ( ( F `  P
)  e.  ( 0 [,)  +oo )  /\  ( F `  Q )  e.  ( 0 [,)  +oo ) )  ->  ( E. t  e.  (
0 [,] 1 ) ( F `  P
)  =  ( t  x.  ( F `  Q ) )  -> 
( F `  P
)  <_  ( F `  Q ) ) )
158 0elunit 10971 . . . . . . . . . . . . . 14  |-  0  e.  ( 0 [,] 1
)
159 simpl 444 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  P
)  =  0  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  -> 
( F `  P
)  =  0 )
16048mul02d 9220 . . . . . . . . . . . . . . . 16  |-  ( ( F `  Q )  e.  ( 0 [,) 
+oo )  ->  (
0  x.  ( F `
 Q ) )  =  0 )
161160adantl 453 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  P
)  =  0  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  -> 
( 0  x.  ( F `  Q )
)  =  0 )
162159, 161eqtr4d 2439 . . . . . . . . . . . . . 14  |-  ( ( ( F `  P
)  =  0  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  -> 
( F `  P
)  =  ( 0  x.  ( F `  Q ) ) )
163 oveq1 6047 . . . . . . . . . . . . . . . 16  |-  ( t  =  0  ->  (
t  x.  ( F `
 Q ) )  =  ( 0  x.  ( F `  Q
) ) )
164163eqeq2d 2415 . . . . . . . . . . . . . . 15  |-  ( t  =  0  ->  (
( F `  P
)  =  ( t  x.  ( F `  Q ) )  <->  ( F `  P )  =  ( 0  x.  ( F `
 Q ) ) ) )
165164rspcev 3012 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  ( 0 [,] 1 )  /\  ( F `  P )  =  ( 0  x.  ( F `  Q
) ) )  ->  E. t  e.  (
0 [,] 1 ) ( F `  P
)  =  ( t  x.  ( F `  Q ) ) )
166158, 162, 165sylancr 645 . . . . . . . . . . . . 13  |-  ( ( ( F `  P
)  =  0  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  ->  E. t  e.  (
0 [,] 1 ) ( F `  P
)  =  ( t  x.  ( F `  Q ) ) )
167166adantrl 697 . . . . . . . . . . . 12  |-  ( ( ( F `  P
)  =  0  /\  ( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) ) )  ->  E. t  e.  ( 0 [,] 1 ) ( F `  P
)  =  ( t  x.  ( F `  Q ) ) )
168167a1d 23 . . . . . . . . . . 11  |-  ( ( ( F `  P
)  =  0  /\  ( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) ) )  ->  ( ( F `
 P )  <_ 
( F `  Q
)  ->  E. t  e.  ( 0 [,] 1
) ( F `  P )  =  ( t  x.  ( F `
 Q ) ) ) )
169168ex 424 . . . . . . . . . 10  |-  ( ( F `  P )  =  0  ->  (
( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  -> 
( ( F `  P )  <_  ( F `  Q )  ->  E. t  e.  ( 0 [,] 1 ) ( F `  P
)  =  ( t  x.  ( F `  Q ) ) ) ) )
170 simp3 959 . . . . . . . . . . . . 13  |-  ( ( ( F `  P
)  =/=  0  /\  ( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  ( F `  P )  <_  ( F `  Q ) )  -> 
( F `  P
)  <_  ( F `  Q ) )
17141adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  P
)  e.  ( 0 [,)  +oo )  /\  ( F `  Q )  e.  ( 0 [,)  +oo ) )  ->  ( F `  P )  e.  RR )
1721713ad2ant2 979 . . . . . . . . . . . . . 14  |-  ( ( ( F `  P
)  =/=  0  /\  ( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  ( F `  P )  <_  ( F `  Q ) )  -> 
( F `  P
)  e.  RR )
17340simprbi 451 . . . . . . . . . . . . . . . 16  |-  ( ( F `  P )  e.  ( 0 [,) 
+oo )  ->  0  <_  ( F `  P
) )
174173adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  P
)  e.  ( 0 [,)  +oo )  /\  ( F `  Q )  e.  ( 0 [,)  +oo ) )  ->  0  <_  ( F `  P
) )
1751743ad2ant2 979 . . . . . . . . . . . . . 14  |-  ( ( ( F `  P
)  =/=  0  /\  ( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  ( F `  P )  <_  ( F `  Q ) )  -> 
0  <_  ( F `  P ) )
17647adantl 453 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  P
)  e.  ( 0 [,)  +oo )  /\  ( F `  Q )  e.  ( 0 [,)  +oo ) )  ->  ( F `  Q )  e.  RR )
1771763ad2ant2 979 . . . . . . . . . . . . . 14  |-  ( ( ( F `  P
)  =/=  0  /\  ( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  ( F `  P )  <_  ( F `  Q ) )  -> 
( F `  Q
)  e.  RR )
17833a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  P
)  =/=  0  /\  ( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  ( F `  P )  <_  ( F `  Q ) )  -> 
0  e.  RR )
179 simp1 957 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  P
)  =/=  0  /\  ( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  ( F `  P )  <_  ( F `  Q ) )  -> 
( F `  P
)  =/=  0 )
180172, 175, 179ne0gt0d 9166 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  P
)  =/=  0  /\  ( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  ( F `  P )  <_  ( F `  Q ) )  -> 
0  <  ( F `  P ) )
181178, 172, 177, 180, 170ltletrd 9186 . . . . . . . . . . . . . 14  |-  ( ( ( F `  P
)  =/=  0  /\  ( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  ( F `  P )  <_  ( F `  Q ) )  -> 
0  <  ( F `  Q ) )
182 divelunit 25138 . . . . . . . . . . . . . 14  |-  ( ( ( ( F `  P )  e.  RR  /\  0  <_  ( F `  P ) )  /\  ( ( F `  Q )  e.  RR  /\  0  <  ( F `
 Q ) ) )  ->  ( (
( F `  P
)  /  ( F `
 Q ) )  e.  ( 0 [,] 1 )  <->  ( F `  P )  <_  ( F `  Q )
) )
183172, 175, 177, 181, 182syl22anc 1185 . . . . . . . . . . . . 13  |-  ( ( ( F `  P
)  =/=  0  /\  ( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  ( F `  P )  <_  ( F `  Q ) )  -> 
( ( ( F `
 P )  / 
( F `  Q
) )  e.  ( 0 [,] 1 )  <-> 
( F `  P
)  <_  ( F `  Q ) ) )
184170, 183mpbird 224 . . . . . . . . . . . 12  |-  ( ( ( F `  P
)  =/=  0  /\  ( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  ( F `  P )  <_  ( F `  Q ) )  -> 
( ( F `  P )  /  ( F `  Q )
)  e.  ( 0 [,] 1 ) )
185433ad2ant2 979 . . . . . . . . . . . . . 14  |-  ( ( ( F `  P
)  =/=  0  /\  ( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  ( F `  P )  <_  ( F `  Q ) )  -> 
( F `  P
)  e.  CC )
186493ad2ant2 979 . . . . . . . . . . . . . 14  |-  ( ( ( F `  P
)  =/=  0  /\  ( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  ( F `  P )  <_  ( F `  Q ) )  -> 
( F `  Q
)  e.  CC )
187181gt0ne0d 9547 . . . . . . . . . . . . . 14  |-  ( ( ( F `  P
)  =/=  0  /\  ( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  ( F `  P )  <_  ( F `  Q ) )  -> 
( F `  Q
)  =/=  0 )
188185, 186, 187divcan1d 9747 . . . . . . . . . . . . 13  |-  ( ( ( F `  P
)  =/=  0  /\  ( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  ( F `  P )  <_  ( F `  Q ) )  -> 
( ( ( F `
 P )  / 
( F `  Q
) )  x.  ( F `  Q )
)  =  ( F `
 P ) )
189188eqcomd 2409 . . . . . . . . . . . 12  |-  ( ( ( F `  P
)  =/=  0  /\  ( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  ( F `  P )  <_  ( F `  Q ) )  -> 
( F `  P
)  =  ( ( ( F `  P
)  /  ( F `
 Q ) )  x.  ( F `  Q ) ) )
190 oveq1 6047 . . . . . . . . . . . . . 14  |-  ( t  =  ( ( F `
 P )  / 
( F `  Q
) )  ->  (
t  x.  ( F `
 Q ) )  =  ( ( ( F `  P )  /  ( F `  Q ) )  x.  ( F `  Q
) ) )
191190eqeq2d 2415 . . . . . . . . . . . . 13  |-  ( t  =  ( ( F `
 P )  / 
( F `  Q
) )  ->  (
( F `  P
)  =  ( t  x.  ( F `  Q ) )  <->  ( F `  P )  =  ( ( ( F `  P )  /  ( F `  Q )
)  x.  ( F `
 Q ) ) ) )
192191rspcev 3012 . . . . . . . . . . . 12  |-  ( ( ( ( F `  P )  /  ( F `  Q )
)  e.  ( 0 [,] 1 )  /\  ( F `  P )  =  ( ( ( F `  P )  /  ( F `  Q ) )  x.  ( F `  Q
) ) )  ->  E. t  e.  (
0 [,] 1 ) ( F `  P
)  =  ( t  x.  ( F `  Q ) ) )
193184, 189, 192syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( F `  P
)  =/=  0  /\  ( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  ( F `  P )  <_  ( F `  Q ) )  ->  E. t  e.  (
0 [,] 1 ) ( F `  P
)  =  ( t  x.  ( F `  Q ) ) )
1941933exp 1152 . . . . . . . . . 10  |-  ( ( F `  P )  =/=  0  ->  (
( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  -> 
( ( F `  P )  <_  ( F `  Q )  ->  E. t  e.  ( 0 [,] 1 ) ( F `  P
)  =  ( t  x.  ( F `  Q ) ) ) ) )
195169, 194pm2.61ine 2643 . . . . . . . . 9  |-  ( ( ( F `  P
)  e.  ( 0 [,)  +oo )  /\  ( F `  Q )  e.  ( 0 [,)  +oo ) )  ->  (
( F `  P
)  <_  ( F `  Q )  ->  E. t  e.  ( 0 [,] 1
) ( F `  P )  =  ( t  x.  ( F `
 Q ) ) ) )
196157, 195impbid 184 . . . . . . . 8  |-  ( ( ( F `  P
)  e.  ( 0 [,)  +oo )  /\  ( F `  Q )  e.  ( 0 [,)  +oo ) )  ->  ( E. t  e.  (
0 [,] 1 ) ( F `  P
)  =  ( t  x.  ( F `  Q ) )  <->  ( F `  P )  <_  ( F `  Q )
) )
197196adantl 453 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( F `  P
)  e.  ( 0 [,)  +oo )  /\  ( F `  Q )  e.  ( 0 [,)  +oo ) ) )  -> 
( E. t  e.  ( 0 [,] 1
) ( F `  P )  =  ( t  x.  ( F `
 Q ) )  <-> 
( F `  P
)  <_  ( F `  Q ) ) )
198143, 197bitrd 245 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( F `  P
)  e.  ( 0 [,)  +oo )  /\  ( F `  Q )  e.  ( 0 [,)  +oo ) ) )  -> 
( E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  i ) )  +  ( ( F `  P )  x.  ( U `  i )
) )  =  ( ( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) ) )  <-> 
( F `  P
)  <_  ( F `  Q ) ) )
19926, 198sylan9bbr 682 . . . . 5  |-  ( ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( F `  P
)  e.  ( 0 [,)  +oo )  /\  ( F `  Q )  e.  ( 0 [,)  +oo ) ) )  /\  A. i  e.  ( 1 ... N ) ( ( P `  i
)  =  ( ( ( 1  -  ( F `  P )
)  x.  ( Z `
 i ) )  +  ( ( F `
 P )  x.  ( U `  i
) ) )  /\  ( Q `  i )  =  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) ) )  ->  ( E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( P `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( Q `  i ) ) )  <-> 
( F `  P
)  <_  ( F `  Q ) ) )
200199anasss 629 . . . 4  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,)  +oo )  /\  ( F `  Q
)  e.  ( 0 [,)  +oo ) )  /\  A. i  e.  ( 1 ... N ) ( ( P `  i
)  =  ( ( ( 1  -  ( F `  P )
)  x.  ( Z `
 i ) )  +  ( ( F `
 P )  x.  ( U `  i
) ) )  /\  ( Q `  i )  =  ( ( ( 1  -  ( F `
 Q ) )  x.  ( Z `  i ) )  +  ( ( F `  Q )  x.  ( U `  i )
) ) ) ) )  ->  ( E. t  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( P `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  ( Q `  i )
) )  <->  ( F `  P )  <_  ( F `  Q )
) )
20118, 200sylan2b 462 . . 3  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
( ( F `  P )  e.  ( 0 [,)  +oo )  /\  A. i  e.  ( 1 ... N ) ( P `  i
)  =  ( ( ( 1  -  ( F `  P )
)  x.  ( Z `
 i ) )  +  ( ( F `
 P )  x.  ( U `  i
) ) ) )  /\  ( ( F `
 Q )  e.  ( 0 [,)  +oo )  /\  A. i  e.  ( 1 ... N
) ( Q `  i )  =  ( ( ( 1  -  ( F `  Q
) )  x.  ( Z `  i )
)  +  ( ( F `  Q )  x.  ( U `  i ) ) ) ) ) )  -> 
( E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( P `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( Q `  i ) ) )  <-> 
( F `  P
)  <_  ( F `  Q ) ) )
20214, 201syldan 457 . 2  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  ( P  e.  D  /\  Q  e.  D )
)  ->  ( E. t  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( P `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  ( Q `  i )
) )  <->  ( F `  P )  <_  ( F `  Q )
) )
20310, 202bitrd 245 1  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  ( P  e.  D  /\  Q  e.  D )
)  ->  ( P  Btwn  <. Z ,  Q >.  <-> 
( F `  P
)  <_  ( F `  Q ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667   {crab 2670   <.cop 3777   class class class wbr 4172   {copab 4225   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    +oocpnf 9073    < clt 9076    <_ cle 9077    - cmin 9247    / cdiv 9633   NNcn 9956   [,)cico 10874   [,]cicc 10875   ...cfz 10999   EEcee 25731    Btwn cbtwn 25732
This theorem is referenced by:  axcontlem9  25815
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-z 10239  df-uz 10445  df-ico 10878  df-icc