MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem12 Structured version   Unicode version

Theorem axcontlem12 23189
Description: Lemma for axcont 23190. Eliminate the trivial cases from the previous lemmas. (Contributed by Scott Fenton, 20-Jun-2013.)
Assertion
Ref Expression
axcontlem12  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
Distinct variable groups:    A, b, x    B, b, x, y    N, b, x, y    Z, b, x, y
Allowed substitution hint:    A( y)

Proof of Theorem axcontlem12
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 rzal 3776 . . . . . . . . 9  |-  ( B  =  (/)  ->  A. y  e.  B  Z  Btwn  <.
x ,  y >.
)
21ralrimivw 2795 . . . . . . . 8  |-  ( B  =  (/)  ->  A. x  e.  A  A. y  e.  B  Z  Btwn  <.
x ,  y >.
)
3 breq1 4290 . . . . . . . . . . 11  |-  ( b  =  Z  ->  (
b  Btwn  <. x ,  y >.  <->  Z  Btwn  <. x ,  y >. )
)
432ralbidv 2752 . . . . . . . . . 10  |-  ( b  =  Z  ->  ( A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. 
<-> 
A. x  e.  A  A. y  e.  B  Z  Btwn  <. x ,  y
>. ) )
54rspcev 3068 . . . . . . . . 9  |-  ( ( Z  e.  ( EE
`  N )  /\  A. x  e.  A  A. y  e.  B  Z  Btwn  <. x ,  y
>. )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
65expcom 435 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  B  Z  Btwn  <. x ,  y
>.  ->  ( Z  e.  ( EE `  N
)  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
72, 6syl 16 . . . . . . 7  |-  ( B  =  (/)  ->  ( Z  e.  ( EE `  N )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
87adantld 467 . . . . . 6  |-  ( B  =  (/)  ->  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
98adantld 467 . . . . 5  |-  ( B  =  (/)  ->  ( ( ( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. ) )
10 simprrl 763 . . . . . . 7  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) ) )
11 simprrr 764 . . . . . . . 8  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  Z  e.  ( EE `  N ) )
12 simprll 761 . . . . . . . 8  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  u  e.  A
)
13 simpl 457 . . . . . . . 8  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  B  =/=  (/) )
1411, 12, 133jca 1168 . . . . . . 7  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  ( Z  e.  ( EE `  N
)  /\  u  e.  A  /\  B  =/=  (/) ) )
15 simprlr 762 . . . . . . 7  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  Z  =/=  u
)
16 axcontlem11 23188 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  u  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  u ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. )
1710, 14, 15, 16syl12anc 1216 . . . . . 6  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. )
1817ex 434 . . . . 5  |-  ( B  =/=  (/)  ->  ( (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. ) )
199, 18pm2.61ine 2682 . . . 4  |-  ( ( ( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. )
2019ex 434 . . 3  |-  ( ( u  e.  A  /\  Z  =/=  u )  -> 
( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
2120rexlimiva 2831 . 2  |-  ( E. u  e.  A  Z  =/=  u  ->  ( (
( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
22 df-ne 2603 . . . . . 6  |-  ( Z  =/=  u  <->  -.  Z  =  u )
2322con2bii 332 . . . . 5  |-  ( Z  =  u  <->  -.  Z  =/=  u )
2423ralbii 2734 . . . 4  |-  ( A. u  e.  A  Z  =  u  <->  A. u  e.  A  -.  Z  =/=  u
)
25 ralnex 2720 . . . 4  |-  ( A. u  e.  A  -.  Z  =/=  u  <->  -.  E. u  e.  A  Z  =/=  u )
2624, 25bitri 249 . . 3  |-  ( A. u  e.  A  Z  =  u  <->  -.  E. u  e.  A  Z  =/=  u )
27 simpr3 996 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  C_  ( EE
`  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  ->  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. )
28 eqeq2 2447 . . . . . . . . . . 11  |-  ( u  =  x  ->  ( Z  =  u  <->  Z  =  x ) )
2928rspccva 3067 . . . . . . . . . 10  |-  ( ( A. u  e.  A  Z  =  u  /\  x  e.  A )  ->  Z  =  x )
30 opeq1 4054 . . . . . . . . . . . . 13  |-  ( Z  =  x  ->  <. Z , 
y >.  =  <. x ,  y >. )
3130breq2d 4299 . . . . . . . . . . . 12  |-  ( Z  =  x  ->  (
x  Btwn  <. Z , 
y >. 
<->  x  Btwn  <. x ,  y >. ) )
32 breq1 4290 . . . . . . . . . . . 12  |-  ( Z  =  x  ->  ( Z  Btwn  <. x ,  y
>. 
<->  x  Btwn  <. x ,  y >. ) )
3331, 32bitr4d 256 . . . . . . . . . . 11  |-  ( Z  =  x  ->  (
x  Btwn  <. Z , 
y >. 
<->  Z  Btwn  <. x ,  y >. ) )
3433ralbidv 2730 . . . . . . . . . 10  |-  ( Z  =  x  ->  ( A. y  e.  B  x  Btwn  <. Z ,  y
>. 
<-> 
A. y  e.  B  Z  Btwn  <. x ,  y
>. ) )
3529, 34syl 16 . . . . . . . . 9  |-  ( ( A. u  e.  A  Z  =  u  /\  x  e.  A )  ->  ( A. y  e.  B  x  Btwn  <. Z , 
y >. 
<-> 
A. y  e.  B  Z  Btwn  <. x ,  y
>. ) )
3635ralbidva 2726 . . . . . . . 8  |-  ( A. u  e.  A  Z  =  u  ->  ( A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. 
<-> 
A. x  e.  A  A. y  e.  B  Z  Btwn  <. x ,  y
>. ) )
3736biimpa 484 . . . . . . 7  |-  ( ( A. u  e.  A  Z  =  u  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. )  ->  A. x  e.  A  A. y  e.  B  Z  Btwn  <.
x ,  y >.
)
3827, 37sylan2 474 . . . . . 6  |-  ( ( A. u  e.  A  Z  =  u  /\  ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) ) )  ->  A. x  e.  A  A. y  e.  B  Z  Btwn  <. x ,  y
>. )
3938, 5sylan2 474 . . . . 5  |-  ( ( Z  e.  ( EE
`  N )  /\  ( A. u  e.  A  Z  =  u  /\  ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) ) ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. )
4039ancoms 453 . . . 4  |-  ( ( ( A. u  e.  A  Z  =  u  /\  ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
4140expl 618 . . 3  |-  ( A. u  e.  A  Z  =  u  ->  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
4226, 41sylbir 213 . 2  |-  ( -. 
E. u  e.  A  Z  =/=  u  ->  (
( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
4321, 42pm2.61i 164 1  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2601   A.wral 2710   E.wrex 2711    C_ wss 3323   (/)c0 3632   <.cop 3878   class class class wbr 4287   ` cfv 5413   NNcn 10314   EEcee 23102    Btwn cbtwn 23103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-er 7093  df-map 7208  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-z 10639  df-uz 10854  df-ico 11298  df-icc 11299  df-fz 11430  df-ee 23105  df-btwn 23106
This theorem is referenced by:  axcont  23190
  Copyright terms: Public domain W3C validator