MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem12 Structured version   Unicode version

Theorem axcontlem12 23372
Description: Lemma for axcont 23373. Eliminate the trivial cases from the previous lemmas. (Contributed by Scott Fenton, 20-Jun-2013.)
Assertion
Ref Expression
axcontlem12  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
Distinct variable groups:    A, b, x    B, b, x, y    N, b, x, y    Z, b, x, y
Allowed substitution hint:    A( y)

Proof of Theorem axcontlem12
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 rzal 3888 . . . . . . . . 9  |-  ( B  =  (/)  ->  A. y  e.  B  Z  Btwn  <.
x ,  y >.
)
21ralrimivw 2830 . . . . . . . 8  |-  ( B  =  (/)  ->  A. x  e.  A  A. y  e.  B  Z  Btwn  <.
x ,  y >.
)
3 breq1 4402 . . . . . . . . . . 11  |-  ( b  =  Z  ->  (
b  Btwn  <. x ,  y >.  <->  Z  Btwn  <. x ,  y >. )
)
432ralbidv 2877 . . . . . . . . . 10  |-  ( b  =  Z  ->  ( A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. 
<-> 
A. x  e.  A  A. y  e.  B  Z  Btwn  <. x ,  y
>. ) )
54rspcev 3177 . . . . . . . . 9  |-  ( ( Z  e.  ( EE
`  N )  /\  A. x  e.  A  A. y  e.  B  Z  Btwn  <. x ,  y
>. )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
65expcom 435 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  B  Z  Btwn  <. x ,  y
>.  ->  ( Z  e.  ( EE `  N
)  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
72, 6syl 16 . . . . . . 7  |-  ( B  =  (/)  ->  ( Z  e.  ( EE `  N )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
87adantld 467 . . . . . 6  |-  ( B  =  (/)  ->  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
98adantld 467 . . . . 5  |-  ( B  =  (/)  ->  ( ( ( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. ) )
10 simprrl 763 . . . . . . 7  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) ) )
11 simprrr 764 . . . . . . . 8  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  Z  e.  ( EE `  N ) )
12 simprll 761 . . . . . . . 8  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  u  e.  A
)
13 simpl 457 . . . . . . . 8  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  B  =/=  (/) )
1411, 12, 133jca 1168 . . . . . . 7  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  ( Z  e.  ( EE `  N
)  /\  u  e.  A  /\  B  =/=  (/) ) )
15 simprlr 762 . . . . . . 7  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  Z  =/=  u
)
16 axcontlem11 23371 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  u  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  u ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. )
1710, 14, 15, 16syl12anc 1217 . . . . . 6  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. )
1817ex 434 . . . . 5  |-  ( B  =/=  (/)  ->  ( (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. ) )
199, 18pm2.61ine 2764 . . . 4  |-  ( ( ( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. )
2019ex 434 . . 3  |-  ( ( u  e.  A  /\  Z  =/=  u )  -> 
( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
2120rexlimiva 2940 . 2  |-  ( E. u  e.  A  Z  =/=  u  ->  ( (
( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
22 df-ne 2649 . . . . . 6  |-  ( Z  =/=  u  <->  -.  Z  =  u )
2322con2bii 332 . . . . 5  |-  ( Z  =  u  <->  -.  Z  =/=  u )
2423ralbii 2838 . . . 4  |-  ( A. u  e.  A  Z  =  u  <->  A. u  e.  A  -.  Z  =/=  u
)
25 ralnex 2851 . . . 4  |-  ( A. u  e.  A  -.  Z  =/=  u  <->  -.  E. u  e.  A  Z  =/=  u )
2624, 25bitri 249 . . 3  |-  ( A. u  e.  A  Z  =  u  <->  -.  E. u  e.  A  Z  =/=  u )
27 simpr3 996 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  C_  ( EE
`  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  ->  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. )
28 eqeq2 2469 . . . . . . . . . . 11  |-  ( u  =  x  ->  ( Z  =  u  <->  Z  =  x ) )
2928rspccva 3176 . . . . . . . . . 10  |-  ( ( A. u  e.  A  Z  =  u  /\  x  e.  A )  ->  Z  =  x )
30 opeq1 4166 . . . . . . . . . . . . 13  |-  ( Z  =  x  ->  <. Z , 
y >.  =  <. x ,  y >. )
3130breq2d 4411 . . . . . . . . . . . 12  |-  ( Z  =  x  ->  (
x  Btwn  <. Z , 
y >. 
<->  x  Btwn  <. x ,  y >. ) )
32 breq1 4402 . . . . . . . . . . . 12  |-  ( Z  =  x  ->  ( Z  Btwn  <. x ,  y
>. 
<->  x  Btwn  <. x ,  y >. ) )
3331, 32bitr4d 256 . . . . . . . . . . 11  |-  ( Z  =  x  ->  (
x  Btwn  <. Z , 
y >. 
<->  Z  Btwn  <. x ,  y >. ) )
3433ralbidv 2845 . . . . . . . . . 10  |-  ( Z  =  x  ->  ( A. y  e.  B  x  Btwn  <. Z ,  y
>. 
<-> 
A. y  e.  B  Z  Btwn  <. x ,  y
>. ) )
3529, 34syl 16 . . . . . . . . 9  |-  ( ( A. u  e.  A  Z  =  u  /\  x  e.  A )  ->  ( A. y  e.  B  x  Btwn  <. Z , 
y >. 
<-> 
A. y  e.  B  Z  Btwn  <. x ,  y
>. ) )
3635ralbidva 2843 . . . . . . . 8  |-  ( A. u  e.  A  Z  =  u  ->  ( A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. 
<-> 
A. x  e.  A  A. y  e.  B  Z  Btwn  <. x ,  y
>. ) )
3736biimpa 484 . . . . . . 7  |-  ( ( A. u  e.  A  Z  =  u  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. )  ->  A. x  e.  A  A. y  e.  B  Z  Btwn  <.
x ,  y >.
)
3827, 37sylan2 474 . . . . . 6  |-  ( ( A. u  e.  A  Z  =  u  /\  ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) ) )  ->  A. x  e.  A  A. y  e.  B  Z  Btwn  <. x ,  y
>. )
3938, 5sylan2 474 . . . . 5  |-  ( ( Z  e.  ( EE
`  N )  /\  ( A. u  e.  A  Z  =  u  /\  ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) ) ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. )
4039ancoms 453 . . . 4  |-  ( ( ( A. u  e.  A  Z  =  u  /\  ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
4140expl 618 . . 3  |-  ( A. u  e.  A  Z  =  u  ->  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
4226, 41sylbir 213 . 2  |-  ( -. 
E. u  e.  A  Z  =/=  u  ->  (
( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
4321, 42pm2.61i 164 1  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2647   A.wral 2798   E.wrex 2799    C_ wss 3435   (/)c0 3744   <.cop 3990   class class class wbr 4399   ` cfv 5525   NNcn 10432   EEcee 23285    Btwn cbtwn 23286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-cnex 9448  ax-resscn 9449  ax-1cn 9450  ax-icn 9451  ax-addcl 9452  ax-addrcl 9453  ax-mulcl 9454  ax-mulrcl 9455  ax-mulcom 9456  ax-addass 9457  ax-mulass 9458  ax-distr 9459  ax-i2m1 9460  ax-1ne0 9461  ax-1rid 9462  ax-rnegex 9463  ax-rrecex 9464  ax-cnre 9465  ax-pre-lttri 9466  ax-pre-lttrn 9467  ax-pre-ltadd 9468  ax-pre-mulgt0 9469  ax-pre-sup 9470
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-reu 2805  df-rmo 2806  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-pss 3451  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-tp 3989  df-op 3991  df-uni 4199  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-tr 4493  df-eprel 4739  df-id 4743  df-po 4748  df-so 4749  df-fr 4786  df-we 4788  df-ord 4829  df-on 4830  df-lim 4831  df-suc 4832  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-om 6586  df-1st 6686  df-2nd 6687  df-recs 6941  df-rdg 6975  df-er 7210  df-map 7325  df-en 7420  df-dom 7421  df-sdom 7422  df-pnf 9530  df-mnf 9531  df-xr 9532  df-ltxr 9533  df-le 9534  df-sub 9707  df-neg 9708  df-div 10104  df-nn 10433  df-z 10757  df-uz 10972  df-ico 11416  df-icc 11417  df-fz 11554  df-ee 23288  df-btwn 23289
This theorem is referenced by:  axcont  23373
  Copyright terms: Public domain W3C validator