MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem12 Structured version   Unicode version

Theorem axcontlem12 24707
Description: Lemma for axcont 24708. Eliminate the trivial cases from the previous lemmas. (Contributed by Scott Fenton, 20-Jun-2013.)
Assertion
Ref Expression
axcontlem12  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
Distinct variable groups:    A, b, x    B, b, x, y    N, b, x, y    Z, b, x, y
Allowed substitution hint:    A( y)

Proof of Theorem axcontlem12
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 rzal 3877 . . . . . . . . 9  |-  ( B  =  (/)  ->  A. y  e.  B  Z  Btwn  <.
x ,  y >.
)
21ralrimivw 2821 . . . . . . . 8  |-  ( B  =  (/)  ->  A. x  e.  A  A. y  e.  B  Z  Btwn  <.
x ,  y >.
)
3 breq1 4400 . . . . . . . . . . 11  |-  ( b  =  Z  ->  (
b  Btwn  <. x ,  y >.  <->  Z  Btwn  <. x ,  y >. )
)
432ralbidv 2850 . . . . . . . . . 10  |-  ( b  =  Z  ->  ( A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. 
<-> 
A. x  e.  A  A. y  e.  B  Z  Btwn  <. x ,  y
>. ) )
54rspcev 3162 . . . . . . . . 9  |-  ( ( Z  e.  ( EE
`  N )  /\  A. x  e.  A  A. y  e.  B  Z  Btwn  <. x ,  y
>. )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
65expcom 435 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  B  Z  Btwn  <. x ,  y
>.  ->  ( Z  e.  ( EE `  N
)  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
72, 6syl 17 . . . . . . 7  |-  ( B  =  (/)  ->  ( Z  e.  ( EE `  N )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
87adantld 467 . . . . . 6  |-  ( B  =  (/)  ->  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
98adantld 467 . . . . 5  |-  ( B  =  (/)  ->  ( ( ( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. ) )
10 simprrl 768 . . . . . . 7  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) ) )
11 simprrr 769 . . . . . . . 8  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  Z  e.  ( EE `  N ) )
12 simprll 766 . . . . . . . 8  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  u  e.  A
)
13 simpl 457 . . . . . . . 8  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  B  =/=  (/) )
1411, 12, 133jca 1179 . . . . . . 7  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  ( Z  e.  ( EE `  N
)  /\  u  e.  A  /\  B  =/=  (/) ) )
15 simprlr 767 . . . . . . 7  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  Z  =/=  u
)
16 axcontlem11 24706 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  u  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  u ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. )
1710, 14, 15, 16syl12anc 1230 . . . . . 6  |-  ( ( B  =/=  (/)  /\  (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. )
1817ex 434 . . . . 5  |-  ( B  =/=  (/)  ->  ( (
( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. ) )
199, 18pm2.61ine 2718 . . . 4  |-  ( ( ( u  e.  A  /\  Z  =/=  u
)  /\  ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. )
2019ex 434 . . 3  |-  ( ( u  e.  A  /\  Z  =/=  u )  -> 
( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
2120rexlimiva 2894 . 2  |-  ( E. u  e.  A  Z  =/=  u  ->  ( (
( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
22 df-ne 2602 . . . . . 6  |-  ( Z  =/=  u  <->  -.  Z  =  u )
2322con2bii 332 . . . . 5  |-  ( Z  =  u  <->  -.  Z  =/=  u )
2423ralbii 2837 . . . 4  |-  ( A. u  e.  A  Z  =  u  <->  A. u  e.  A  -.  Z  =/=  u
)
25 ralnex 2852 . . . 4  |-  ( A. u  e.  A  -.  Z  =/=  u  <->  -.  E. u  e.  A  Z  =/=  u )
2624, 25bitri 251 . . 3  |-  ( A. u  e.  A  Z  =  u  <->  -.  E. u  e.  A  Z  =/=  u )
27 simpr3 1007 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  C_  ( EE
`  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  ->  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. )
28 eqeq2 2419 . . . . . . . . . . 11  |-  ( u  =  x  ->  ( Z  =  u  <->  Z  =  x ) )
2928rspccva 3161 . . . . . . . . . 10  |-  ( ( A. u  e.  A  Z  =  u  /\  x  e.  A )  ->  Z  =  x )
30 opeq1 4161 . . . . . . . . . . . . 13  |-  ( Z  =  x  ->  <. Z , 
y >.  =  <. x ,  y >. )
3130breq2d 4409 . . . . . . . . . . . 12  |-  ( Z  =  x  ->  (
x  Btwn  <. Z , 
y >. 
<->  x  Btwn  <. x ,  y >. ) )
32 breq1 4400 . . . . . . . . . . . 12  |-  ( Z  =  x  ->  ( Z  Btwn  <. x ,  y
>. 
<->  x  Btwn  <. x ,  y >. ) )
3331, 32bitr4d 258 . . . . . . . . . . 11  |-  ( Z  =  x  ->  (
x  Btwn  <. Z , 
y >. 
<->  Z  Btwn  <. x ,  y >. ) )
3433ralbidv 2845 . . . . . . . . . 10  |-  ( Z  =  x  ->  ( A. y  e.  B  x  Btwn  <. Z ,  y
>. 
<-> 
A. y  e.  B  Z  Btwn  <. x ,  y
>. ) )
3529, 34syl 17 . . . . . . . . 9  |-  ( ( A. u  e.  A  Z  =  u  /\  x  e.  A )  ->  ( A. y  e.  B  x  Btwn  <. Z , 
y >. 
<-> 
A. y  e.  B  Z  Btwn  <. x ,  y
>. ) )
3635ralbidva 2842 . . . . . . . 8  |-  ( A. u  e.  A  Z  =  u  ->  ( A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. 
<-> 
A. x  e.  A  A. y  e.  B  Z  Btwn  <. x ,  y
>. ) )
3736biimpa 484 . . . . . . 7  |-  ( ( A. u  e.  A  Z  =  u  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. )  ->  A. x  e.  A  A. y  e.  B  Z  Btwn  <.
x ,  y >.
)
3827, 37sylan2 474 . . . . . 6  |-  ( ( A. u  e.  A  Z  =  u  /\  ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) ) )  ->  A. x  e.  A  A. y  e.  B  Z  Btwn  <. x ,  y
>. )
3938, 5sylan2 474 . . . . 5  |-  ( ( Z  e.  ( EE
`  N )  /\  ( A. u  e.  A  Z  =  u  /\  ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) ) ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. )
4039ancoms 453 . . . 4  |-  ( ( ( A. u  e.  A  Z  =  u  /\  ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
4140expl 618 . . 3  |-  ( A. u  e.  A  Z  =  u  ->  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
4226, 41sylbir 215 . 2  |-  ( -. 
E. u  e.  A  Z  =/=  u  ->  (
( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
4321, 42pm2.61i 166 1  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  Z  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 186    /\ wa 369    /\ w3a 976    = wceq 1407    e. wcel 1844    =/= wne 2600   A.wral 2756   E.wrex 2757    C_ wss 3416   (/)c0 3740   <.cop 3980   class class class wbr 4397   ` cfv 5571   NNcn 10578   EEcee 24620    Btwn cbtwn 24621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-cnex 9580  ax-resscn 9581  ax-1cn 9582  ax-icn 9583  ax-addcl 9584  ax-addrcl 9585  ax-mulcl 9586  ax-mulrcl 9587  ax-mulcom 9588  ax-addass 9589  ax-mulass 9590  ax-distr 9591  ax-i2m1 9592  ax-1ne0 9593  ax-1rid 9594  ax-rnegex 9595  ax-rrecex 9596  ax-cnre 9597  ax-pre-lttri 9598  ax-pre-lttrn 9599  ax-pre-ltadd 9600  ax-pre-mulgt0 9601  ax-pre-sup 9602
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-nel 2603  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-uni 4194  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-pred 5369  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-om 6686  df-1st 6786  df-2nd 6787  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-er 7350  df-map 7461  df-en 7557  df-dom 7558  df-sdom 7559  df-pnf 9662  df-mnf 9663  df-xr 9664  df-ltxr 9665  df-le 9666  df-sub 9845  df-neg 9846  df-div 10250  df-nn 10579  df-z 10908  df-uz 11130  df-ico 11590  df-icc 11591  df-fz 11729  df-ee 24623  df-btwn 24624
This theorem is referenced by:  axcont  24708
  Copyright terms: Public domain W3C validator