MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem10 Structured version   Unicode version

Theorem axcontlem10 23354
Description: Lemma for axcont 23357. Given a handful of assumptions, derive the conclusion of the final theorem. (Contributed by Scott Fenton, 20-Jun-2013.)
Hypotheses
Ref Expression
axcontlem10.1  |-  D  =  { p  e.  ( EE `  N )  |  ( U  Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) }
axcontlem10.2  |-  F  =  { <. x ,  t
>.  |  ( x  e.  D  /\  (
t  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  ( U `  i )
) ) ) ) }
Assertion
Ref Expression
axcontlem10  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. )
Distinct variable groups:    A, b, p, x    B, b, p, x, y    D, p, t, x    F, b   
i, F, p, t, x    y, F    N, b    i, N, p, t, x    y, N    U, b    U, i, p, t, x    y, U    Z, b    i, Z, p, t, x    y, Z
Allowed substitution hints:    A( y, t, i)    B( t, i)    D( y, i, b)

Proof of Theorem axcontlem10
Dummy variables  k  m  n  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 5278 . . . . 5  |-  ( F
" A )  C_  ran  F
2 simpll 753 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  N  e.  NN )
3 simprl1 1033 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  Z  e.  ( EE `  N ) )
4 simplr1 1030 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  A  C_  ( EE `  N ) )
5 simprl2 1034 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  U  e.  A
)
64, 5sseldd 3455 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  U  e.  ( EE `  N ) )
7 simprr 756 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  Z  =/=  U
)
8 axcontlem10.1 . . . . . . . 8  |-  D  =  { p  e.  ( EE `  N )  |  ( U  Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) }
9 axcontlem10.2 . . . . . . . 8  |-  F  =  { <. x ,  t
>.  |  ( x  e.  D  /\  (
t  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  ( U `  i )
) ) ) ) }
108, 9axcontlem2 23346 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  Z  e.  ( EE
`  N )  /\  U  e.  ( EE `  N ) )  /\  Z  =/=  U )  ->  F : D -1-1-onto-> ( 0 [,) +oo ) )
112, 3, 6, 7, 10syl31anc 1222 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  F : D -1-1-onto-> (
0 [,) +oo )
)
12 f1ofo 5746 . . . . . 6  |-  ( F : D -1-1-onto-> ( 0 [,) +oo )  ->  F : D -onto->
( 0 [,) +oo ) )
13 forn 5721 . . . . . 6  |-  ( F : D -onto-> ( 0 [,) +oo )  ->  ran  F  =  ( 0 [,) +oo ) )
1411, 12, 133syl 20 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ran  F  =  ( 0 [,) +oo ) )
151, 14syl5sseq 3502 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( F " A )  C_  (
0 [,) +oo )
)
16 elrege0 11493 . . . . . 6  |-  ( x  e.  ( 0 [,) +oo )  <->  ( x  e.  RR  /\  0  <_  x ) )
1716simplbi 460 . . . . 5  |-  ( x  e.  ( 0 [,) +oo )  ->  x  e.  RR )
1817ssriv 3458 . . . 4  |-  ( 0 [,) +oo )  C_  RR
1915, 18syl6ss 3466 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( F " A )  C_  RR )
20 imassrn 5278 . . . . 5  |-  ( F
" B )  C_  ran  F
2120, 14syl5sseq 3502 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( F " B )  C_  (
0 [,) +oo )
)
2221, 18syl6ss 3466 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( F " B )  C_  RR )
238, 9axcontlem9 23353 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  A. m  e.  ( F " A ) A. n  e.  ( F " B ) m  <_  n )
24 dedekindle 9635 . . 3  |-  ( ( ( F " A
)  C_  RR  /\  ( F " B )  C_  RR  /\  A. m  e.  ( F " A
) A. n  e.  ( F " B
) m  <_  n
)  ->  E. k  e.  RR  A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n ) )
2519, 22, 23, 24syl3anc 1219 . 2  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  E. k  e.  RR  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )
26 simpr 461 . . . . . . . 8  |-  ( ( ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  /\  k  e.  RR )  ->  k  e.  RR )
27 simprl3 1035 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  B  =/=  (/) )
2827ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  /\  k  e.  RR )  ->  B  =/=  (/) )
29 n0 3744 . . . . . . . . . 10  |-  ( B  =/=  (/)  <->  E. b  b  e.  B )
3028, 29sylib 196 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  /\  k  e.  RR )  ->  E. b  b  e.  B )
31 0re 9487 . . . . . . . . . . . . 13  |-  0  e.  RR
3231a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  /\  ( k  e.  RR  /\  b  e.  B ) )  ->  0  e.  RR )
33 f1of 5739 . . . . . . . . . . . . . . . 16  |-  ( F : D -1-1-onto-> ( 0 [,) +oo )  ->  F : D --> ( 0 [,) +oo ) )
3411, 33syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  F : D --> ( 0 [,) +oo ) )
358axcontlem4 23348 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  A  C_  D
)
3635, 5sseldd 3455 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  U  e.  D
)
3734, 36ffvelrnd 5943 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( F `  U )  e.  ( 0 [,) +oo )
)
3818, 37sseldi 3452 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( F `  U )  e.  RR )
3938ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  /\  ( k  e.  RR  /\  b  e.  B ) )  ->  ( F `  U )  e.  RR )
40 simprl 755 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  /\  ( k  e.  RR  /\  b  e.  B ) )  ->  k  e.  RR )
41 elrege0 11493 . . . . . . . . . . . . . . 15  |-  ( ( F `  U )  e.  ( 0 [,) +oo )  <->  ( ( F `
 U )  e.  RR  /\  0  <_ 
( F `  U
) ) )
4241simprbi 464 . . . . . . . . . . . . . 14  |-  ( ( F `  U )  e.  ( 0 [,) +oo )  ->  0  <_ 
( F `  U
) )
4337, 42syl 16 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  0  <_  ( F `  U )
)
4443ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  /\  ( k  e.  RR  /\  b  e.  B ) )  ->  0  <_  ( F `  U ) )
45 f1of1 5738 . . . . . . . . . . . . . . . . . . . 20  |-  ( F : D -1-1-onto-> ( 0 [,) +oo )  ->  F : D -1-1-> ( 0 [,) +oo )
)
4611, 45syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  F : D -1-1-> ( 0 [,) +oo )
)
47 f1elima 6075 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : D -1-1-> ( 0 [,) +oo )  /\  U  e.  D  /\  A  C_  D )  ->  ( ( F `
 U )  e.  ( F " A
)  <->  U  e.  A
) )
4846, 36, 35, 47syl3anc 1219 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( ( F `
 U )  e.  ( F " A
)  <->  U  e.  A
) )
495, 48mpbird 232 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( F `  U )  e.  ( F " A ) )
5049adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( k  e.  RR  /\  b  e.  B ) )  ->  ( F `  U )  e.  ( F " A ) )
51 simpr 461 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  b  e.  B )  ->  b  e.  B )
5246adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  b  e.  B )  ->  F : D -1-1-> ( 0 [,) +oo )
)
53 simpl1 991 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U )  ->  Z  e.  ( EE `  N ) )
54 simpl2 992 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U )  ->  U  e.  A )
55 simpr 461 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U )  ->  Z  =/=  U )
5653, 54, 553jca 1168 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U )  -> 
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  Z  =/=  U
) )
578axcontlem3 23347 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  ( Z  e.  ( EE `  N )  /\  U  e.  A  /\  Z  =/= 
U ) )  ->  B  C_  D )
5856, 57sylan2 474 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  B  C_  D
)
5958sselda 3454 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  b  e.  B )  ->  b  e.  D )
6058adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  b  e.  B )  ->  B  C_  D )
61 f1elima 6075 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : D -1-1-> ( 0 [,) +oo )  /\  b  e.  D  /\  B  C_  D )  ->  ( ( F `
 b )  e.  ( F " B
)  <->  b  e.  B
) )
6252, 59, 60, 61syl3anc 1219 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  b  e.  B )  ->  ( ( F `  b )  e.  ( F " B )  <-> 
b  e.  B ) )
6351, 62mpbird 232 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  b  e.  B )  ->  ( F `  b
)  e.  ( F
" B ) )
6463adantrl 715 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( k  e.  RR  /\  b  e.  B ) )  ->  ( F `  b )  e.  ( F " B ) )
6550, 64jca 532 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( k  e.  RR  /\  b  e.  B ) )  ->  ( ( F `  U )  e.  ( F " A
)  /\  ( F `  b )  e.  ( F " B ) ) )
66 breq1 4393 . . . . . . . . . . . . . . . . 17  |-  ( m  =  ( F `  U )  ->  (
m  <_  k  <->  ( F `  U )  <_  k
) )
6766anbi1d 704 . . . . . . . . . . . . . . . 16  |-  ( m  =  ( F `  U )  ->  (
( m  <_  k  /\  k  <_  n )  <-> 
( ( F `  U )  <_  k  /\  k  <_  n ) ) )
68 breq2 4394 . . . . . . . . . . . . . . . . 17  |-  ( n  =  ( F `  b )  ->  (
k  <_  n  <->  k  <_  ( F `  b ) ) )
6968anbi2d 703 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( F `  b )  ->  (
( ( F `  U )  <_  k  /\  k  <_  n )  <-> 
( ( F `  U )  <_  k  /\  k  <_  ( F `
 b ) ) ) )
7067, 69rspc2va 3177 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F `  U )  e.  ( F " A )  /\  ( F `  b )  e.  ( F " B ) )  /\  A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n ) )  ->  (
( F `  U
)  <_  k  /\  k  <_  ( F `  b ) ) )
7165, 70sylan 471 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( k  e.  RR  /\  b  e.  B ) )  /\  A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n ) )  ->  (
( F `  U
)  <_  k  /\  k  <_  ( F `  b ) ) )
7271an32s 802 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  /\  ( k  e.  RR  /\  b  e.  B ) )  ->  ( ( F `  U )  <_  k  /\  k  <_ 
( F `  b
) ) )
7372simpld 459 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  /\  ( k  e.  RR  /\  b  e.  B ) )  ->  ( F `  U )  <_  k
)
7432, 39, 40, 44, 73letrd 9629 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  /\  ( k  e.  RR  /\  b  e.  B ) )  ->  0  <_  k )
7574expr 615 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  /\  k  e.  RR )  ->  ( b  e.  B  ->  0  <_  k )
)
7675exlimdv 1691 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  /\  k  e.  RR )  ->  ( E. b  b  e.  B  ->  0  <_  k ) )
7730, 76mpd 15 . . . . . . . 8  |-  ( ( ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  /\  k  e.  RR )  ->  0  <_  k )
78 elrege0 11493 . . . . . . . 8  |-  ( k  e.  ( 0 [,) +oo )  <->  ( k  e.  RR  /\  0  <_ 
k ) )
7926, 77, 78sylanbrc 664 . . . . . . 7  |-  ( ( ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  /\  k  e.  RR )  ->  k  e.  ( 0 [,) +oo ) )
8079ex 434 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  -> 
( k  e.  RR  ->  k  e.  ( 0 [,) +oo ) ) )
81 ssrab2 3535 . . . . . . . . . 10  |-  { p  e.  ( EE `  N
)  |  ( U 
Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) }  C_  ( EE `  N )
828, 81eqsstri 3484 . . . . . . . . 9  |-  D  C_  ( EE `  N )
83 simpr 461 . . . . . . . . . 10  |-  ( ( A. m  e.  ( F " A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo )
)  ->  k  e.  ( 0 [,) +oo ) )
84 f1ocnvdm 6088 . . . . . . . . . 10  |-  ( ( F : D -1-1-onto-> ( 0 [,) +oo )  /\  k  e.  ( 0 [,) +oo ) )  ->  ( `' F `  k )  e.  D
)
8511, 83, 84syl2an 477 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( A. m  e.  ( F " A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo )
) )  ->  ( `' F `  k )  e.  D )
8682, 85sseldi 3452 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( A. m  e.  ( F " A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo )
) )  ->  ( `' F `  k )  e.  ( EE `  N ) )
872, 3, 63jca 1168 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) ) )
8887, 7jca 532 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U ) )
8988adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo ) )  /\  (
q  e.  A  /\  r  e.  B )
) )  ->  (
( N  e.  NN  /\  Z  e.  ( EE
`  N )  /\  U  e.  ( EE `  N ) )  /\  Z  =/=  U ) )
9035sselda 3454 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  q  e.  A )  ->  q  e.  D )
9190adantrr 716 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( q  e.  A  /\  r  e.  B
) )  ->  q  e.  D )
9291adantrl 715 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo ) )  /\  (
q  e.  A  /\  r  e.  B )
) )  ->  q  e.  D )
93 simplr 754 . . . . . . . . . . . . . . 15  |-  ( ( ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo ) )  /\  (
q  e.  A  /\  r  e.  B )
)  ->  k  e.  ( 0 [,) +oo ) )
9411, 93, 84syl2an 477 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo ) )  /\  (
q  e.  A  /\  r  e.  B )
) )  ->  ( `' F `  k )  e.  D )
9558sselda 3454 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  r  e.  B )  ->  r  e.  D )
9695adantrl 715 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( q  e.  A  /\  r  e.  B
) )  ->  r  e.  D )
9796adantrl 715 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo ) )  /\  (
q  e.  A  /\  r  e.  B )
) )  ->  r  e.  D )
9892, 94, 973jca 1168 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo ) )  /\  (
q  e.  A  /\  r  e.  B )
) )  ->  (
q  e.  D  /\  ( `' F `  k )  e.  D  /\  r  e.  D ) )
9989, 98jca 532 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo ) )  /\  (
q  e.  A  /\  r  e.  B )
) )  ->  (
( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
q  e.  D  /\  ( `' F `  k )  e.  D  /\  r  e.  D ) ) )
100 f1ofun 5741 . . . . . . . . . . . . . . . . . . 19  |-  ( F : D -1-1-onto-> ( 0 [,) +oo )  ->  Fun  F )
10111, 100syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  Fun  F )
102 fdm 5661 . . . . . . . . . . . . . . . . . . . 20  |-  ( F : D --> ( 0 [,) +oo )  ->  dom  F  =  D )
10311, 33, 1023syl 20 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  dom  F  =  D )
10435, 103sseqtr4d 3491 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  A  C_  dom  F )
105 funfvima2 6052 . . . . . . . . . . . . . . . . . 18  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( q  e.  A  ->  ( F `  q
)  e.  ( F
" A ) ) )
106101, 104, 105syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( q  e.  A  ->  ( F `  q )  e.  ( F " A ) ) )
10758, 103sseqtr4d 3491 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  B  C_  dom  F )
108 funfvima2 6052 . . . . . . . . . . . . . . . . . 18  |-  ( ( Fun  F  /\  B  C_ 
dom  F )  -> 
( r  e.  B  ->  ( F `  r
)  e.  ( F
" B ) ) )
109101, 107, 108syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( r  e.  B  ->  ( F `  r )  e.  ( F " B ) ) )
110106, 109anim12d 563 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( ( q  e.  A  /\  r  e.  B )  ->  (
( F `  q
)  e.  ( F
" A )  /\  ( F `  r )  e.  ( F " B ) ) ) )
111110imp 429 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( q  e.  A  /\  r  e.  B
) )  ->  (
( F `  q
)  e.  ( F
" A )  /\  ( F `  r )  e.  ( F " B ) ) )
112111adantrl 715 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo ) )  /\  (
q  e.  A  /\  r  e.  B )
) )  ->  (
( F `  q
)  e.  ( F
" A )  /\  ( F `  r )  e.  ( F " B ) ) )
113 simprll 761 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo ) )  /\  (
q  e.  A  /\  r  e.  B )
) )  ->  A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n ) )
114 breq1 4393 . . . . . . . . . . . . . . . 16  |-  ( m  =  ( F `  q )  ->  (
m  <_  k  <->  ( F `  q )  <_  k
) )
115114anbi1d 704 . . . . . . . . . . . . . . 15  |-  ( m  =  ( F `  q )  ->  (
( m  <_  k  /\  k  <_  n )  <-> 
( ( F `  q )  <_  k  /\  k  <_  n ) ) )
116 breq2 4394 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( F `  r )  ->  (
k  <_  n  <->  k  <_  ( F `  r ) ) )
117116anbi2d 703 . . . . . . . . . . . . . . 15  |-  ( n  =  ( F `  r )  ->  (
( ( F `  q )  <_  k  /\  k  <_  n )  <-> 
( ( F `  q )  <_  k  /\  k  <_  ( F `
 r ) ) ) )
118115, 117rspc2v 3176 . . . . . . . . . . . . . 14  |-  ( ( ( F `  q
)  e.  ( F
" A )  /\  ( F `  r )  e.  ( F " B ) )  -> 
( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  ->  ( ( F `  q )  <_  k  /\  k  <_ 
( F `  r
) ) ) )
119112, 113, 118sylc 60 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo ) )  /\  (
q  e.  A  /\  r  e.  B )
) )  ->  (
( F `  q
)  <_  k  /\  k  <_  ( F `  r ) ) )
120 f1ocnvfv2 6083 . . . . . . . . . . . . . . . 16  |-  ( ( F : D -1-1-onto-> ( 0 [,) +oo )  /\  k  e.  ( 0 [,) +oo ) )  ->  ( F `  ( `' F `  k ) )  =  k )
12111, 93, 120syl2an 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo ) )  /\  (
q  e.  A  /\  r  e.  B )
) )  ->  ( F `  ( `' F `  k )
)  =  k )
122121breq2d 4402 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo ) )  /\  (
q  e.  A  /\  r  e.  B )
) )  ->  (
( F `  q
)  <_  ( F `  ( `' F `  k ) )  <->  ( F `  q )  <_  k
) )
123121breq1d 4400 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo ) )  /\  (
q  e.  A  /\  r  e.  B )
) )  ->  (
( F `  ( `' F `  k ) )  <_  ( F `  r )  <->  k  <_  ( F `  r ) ) )
124122, 123anbi12d 710 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo ) )  /\  (
q  e.  A  /\  r  e.  B )
) )  ->  (
( ( F `  q )  <_  ( F `  ( `' F `  k )
)  /\  ( F `  ( `' F `  k ) )  <_ 
( F `  r
) )  <->  ( ( F `  q )  <_  k  /\  k  <_ 
( F `  r
) ) ) )
125119, 124mpbird 232 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo ) )  /\  (
q  e.  A  /\  r  e.  B )
) )  ->  (
( F `  q
)  <_  ( F `  ( `' F `  k ) )  /\  ( F `  ( `' F `  k ) )  <_  ( F `  r ) ) )
1268, 9axcontlem8 23352 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
q  e.  D  /\  ( `' F `  k )  e.  D  /\  r  e.  D ) )  -> 
( ( ( F `
 q )  <_ 
( F `  ( `' F `  k ) )  /\  ( F `
 ( `' F `  k ) )  <_ 
( F `  r
) )  ->  ( `' F `  k ) 
Btwn  <. q ,  r
>. ) )
12799, 125, 126sylc 60 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo ) )  /\  (
q  e.  A  /\  r  e.  B )
) )  ->  ( `' F `  k ) 
Btwn  <. q ,  r
>. )
128127anassrs 648 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( A. m  e.  ( F " A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo )
) )  /\  (
q  e.  A  /\  r  e.  B )
)  ->  ( `' F `  k )  Btwn  <. q ,  r
>. )
129128ralrimivva 2904 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( A. m  e.  ( F " A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo )
) )  ->  A. q  e.  A  A. r  e.  B  ( `' F `  k )  Btwn  <. q ,  r
>. )
130 opeq1 4157 . . . . . . . . . . 11  |-  ( q  =  x  ->  <. q ,  r >.  =  <. x ,  r >. )
131130breq2d 4402 . . . . . . . . . 10  |-  ( q  =  x  ->  (
( `' F `  k )  Btwn  <. q ,  r >.  <->  ( `' F `  k )  Btwn  <. x ,  r
>. ) )
132 opeq2 4158 . . . . . . . . . . 11  |-  ( r  =  y  ->  <. x ,  r >.  =  <. x ,  y >. )
133132breq2d 4402 . . . . . . . . . 10  |-  ( r  =  y  ->  (
( `' F `  k )  Btwn  <. x ,  r >.  <->  ( `' F `  k )  Btwn  <. x ,  y
>. ) )
134131, 133cbvral2v 3051 . . . . . . . . 9  |-  ( A. q  e.  A  A. r  e.  B  ( `' F `  k ) 
Btwn  <. q ,  r
>. 
<-> 
A. x  e.  A  A. y  e.  B  ( `' F `  k ) 
Btwn  <. x ,  y
>. )
135129, 134sylib 196 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( A. m  e.  ( F " A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo )
) )  ->  A. x  e.  A  A. y  e.  B  ( `' F `  k )  Btwn  <. x ,  y
>. )
136 breq1 4393 . . . . . . . . . 10  |-  ( b  =  ( `' F `  k )  ->  (
b  Btwn  <. x ,  y >.  <->  ( `' F `  k )  Btwn  <. x ,  y >. )
)
1371362ralbidv 2861 . . . . . . . . 9  |-  ( b  =  ( `' F `  k )  ->  ( A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. 
<-> 
A. x  e.  A  A. y  e.  B  ( `' F `  k ) 
Btwn  <. x ,  y
>. ) )
138137rspcev 3169 . . . . . . . 8  |-  ( ( ( `' F `  k )  e.  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  ( `' F `  k )  Btwn  <. x ,  y >. )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. )
13986, 135, 138syl2anc 661 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( A. m  e.  ( F " A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo )
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
140139expr 615 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  -> 
( k  e.  ( 0 [,) +oo )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. ) )
14180, 140syld 44 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  -> 
( k  e.  RR  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. ) )
142141ex 434 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  ->  ( k  e.  RR  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
) )
143142com23 78 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( k  e.  RR  ->  ( A. m  e.  ( F " A ) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
) )
144143rexlimdv 2936 . 2  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( E. k  e.  RR  A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
14525, 144mpd 15 1  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1370   E.wex 1587    e. wcel 1758    =/= wne 2644   A.wral 2795   E.wrex 2796   {crab 2799    C_ wss 3426   (/)c0 3735   <.cop 3981   class class class wbr 4390   {copab 4447   `'ccnv 4937   dom cdm 4938   ran crn 4939   "cima 4941   Fun wfun 5510   -->wf 5512   -1-1->wf1 5513   -onto->wfo 5514   -1-1-onto->wf1o 5515   ` cfv 5516  (class class class)co 6190   RRcr 9382   0cc0 9383   1c1 9384    + caddc 9386    x. cmul 9388   +oocpnf 9516    <_ cle 9520    - cmin 9696   NNcn 10423   [,)cico 11403   ...cfz 11538   EEcee 23269    Btwn cbtwn 23270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-cnex 9439  ax-resscn 9440  ax-1cn 9441  ax-icn 9442  ax-addcl 9443  ax-addrcl 9444  ax-mulcl 9445  ax-mulrcl 9446  ax-mulcom 9447  ax-addass 9448  ax-mulass 9449  ax-distr 9450  ax-i2m1 9451  ax-1ne0 9452  ax-1rid 9453  ax-rnegex 9454  ax-rrecex 9455  ax-cnre 9456  ax-pre-lttri 9457  ax-pre-lttrn 9458  ax-pre-ltadd 9459  ax-pre-mulgt0 9460  ax-pre-sup 9461
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-iun 4271  df-br 4391  df-opab 4449  df-mpt 4450  df-tr 4484  df-eprel 4730  df-id 4734  df-po 4739  df-so 4740  df-fr 4777  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-riota 6151  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-om 6577  df-1st 6677  df-2nd 6678  df-recs 6932  df-rdg 6966  df-er 7201  df-map 7316  df-en 7411  df-dom 7412  df-sdom 7413  df-pnf 9521  df-mnf 9522  df-xr 9523  df-ltxr 9524  df-le 9525  df-sub 9698  df-neg 9699  df-div 10095  df-nn 10424  df-z 10748  df-uz 10963  df-ico 11407  df-icc 11408  df-fz 11539  df-ee 23272  df-btwn 23273
This theorem is referenced by:  axcontlem11  23355
  Copyright terms: Public domain W3C validator