MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcnre Unicode version

Theorem axcnre 8995
Description: A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom 17 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-cnre 9019. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axcnre  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
Distinct variable group:    x, y, A

Proof of Theorem axcnre
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-c 8952 . 2  |-  CC  =  ( R.  X.  R. )
2 eqeq1 2410 . . 3  |-  ( <.
z ,  w >.  =  A  ->  ( <. z ,  w >.  =  ( x  +  ( _i  x.  y ) )  <-> 
A  =  ( x  +  ( _i  x.  y ) ) ) )
322rexbidv 2709 . 2  |-  ( <.
z ,  w >.  =  A  ->  ( E. x  e.  RR  E. y  e.  RR  <. z ,  w >.  =  ( x  +  ( _i  x.  y
) )  <->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) ) )
4 opelreal 8961 . . . . . 6  |-  ( <.
z ,  0R >.  e.  RR  <->  z  e.  R. )
5 opelreal 8961 . . . . . 6  |-  ( <.
w ,  0R >.  e.  RR  <->  w  e.  R. )
64, 5anbi12i 679 . . . . 5  |-  ( (
<. z ,  0R >.  e.  RR  /\  <. w ,  0R >.  e.  RR ) 
<->  ( z  e.  R.  /\  w  e.  R. )
)
76biimpri 198 . . . 4  |-  ( ( z  e.  R.  /\  w  e.  R. )  ->  ( <. z ,  0R >.  e.  RR  /\  <. w ,  0R >.  e.  RR ) )
8 df-i 8955 . . . . . . . . 9  |-  _i  =  <. 0R ,  1R >.
98oveq1i 6050 . . . . . . . 8  |-  ( _i  x.  <. w ,  0R >. )  =  ( <. 0R ,  1R >.  x.  <. w ,  0R >. )
10 0r 8911 . . . . . . . . . 10  |-  0R  e.  R.
11 1sr 8912 . . . . . . . . . . 11  |-  1R  e.  R.
12 mulcnsr 8967 . . . . . . . . . . 11  |-  ( ( ( 0R  e.  R.  /\ 
1R  e.  R. )  /\  ( w  e.  R.  /\  0R  e.  R. )
)  ->  ( <. 0R ,  1R >.  x.  <. w ,  0R >. )  =  <. ( ( 0R 
.R  w )  +R  ( -1R  .R  ( 1R  .R  0R ) ) ) ,  ( ( 1R  .R  w )  +R  ( 0R  .R  0R ) ) >. )
1310, 11, 12mpanl12 664 . . . . . . . . . 10  |-  ( ( w  e.  R.  /\  0R  e.  R. )  -> 
( <. 0R ,  1R >.  x.  <. w ,  0R >. )  =  <. (
( 0R  .R  w
)  +R  ( -1R 
.R  ( 1R  .R  0R ) ) ) ,  ( ( 1R  .R  w )  +R  ( 0R  .R  0R ) )
>. )
1410, 13mpan2 653 . . . . . . . . 9  |-  ( w  e.  R.  ->  ( <. 0R ,  1R >.  x. 
<. w ,  0R >. )  =  <. ( ( 0R 
.R  w )  +R  ( -1R  .R  ( 1R  .R  0R ) ) ) ,  ( ( 1R  .R  w )  +R  ( 0R  .R  0R ) ) >. )
15 mulcomsr 8920 . . . . . . . . . . . . 13  |-  ( 0R 
.R  w )  =  ( w  .R  0R )
16 00sr 8930 . . . . . . . . . . . . 13  |-  ( w  e.  R.  ->  (
w  .R  0R )  =  0R )
1715, 16syl5eq 2448 . . . . . . . . . . . 12  |-  ( w  e.  R.  ->  ( 0R  .R  w )  =  0R )
1817oveq1d 6055 . . . . . . . . . . 11  |-  ( w  e.  R.  ->  (
( 0R  .R  w
)  +R  ( -1R 
.R  ( 1R  .R  0R ) ) )  =  ( 0R  +R  ( -1R  .R  ( 1R  .R  0R ) ) ) )
19 00sr 8930 . . . . . . . . . . . . . . . 16  |-  ( 1R  e.  R.  ->  ( 1R  .R  0R )  =  0R )
2011, 19ax-mp 8 . . . . . . . . . . . . . . 15  |-  ( 1R 
.R  0R )  =  0R
2120oveq2i 6051 . . . . . . . . . . . . . 14  |-  ( -1R 
.R  ( 1R  .R  0R ) )  =  ( -1R  .R  0R )
22 m1r 8913 . . . . . . . . . . . . . . 15  |-  -1R  e.  R.
23 00sr 8930 . . . . . . . . . . . . . . 15  |-  ( -1R 
e.  R.  ->  ( -1R 
.R  0R )  =  0R )
2422, 23ax-mp 8 . . . . . . . . . . . . . 14  |-  ( -1R 
.R  0R )  =  0R
2521, 24eqtri 2424 . . . . . . . . . . . . 13  |-  ( -1R 
.R  ( 1R  .R  0R ) )  =  0R
2625oveq2i 6051 . . . . . . . . . . . 12  |-  ( 0R 
+R  ( -1R  .R  ( 1R  .R  0R ) ) )  =  ( 0R  +R  0R )
27 0idsr 8928 . . . . . . . . . . . . 13  |-  ( 0R  e.  R.  ->  ( 0R  +R  0R )  =  0R )
2810, 27ax-mp 8 . . . . . . . . . . . 12  |-  ( 0R 
+R  0R )  =  0R
2926, 28eqtri 2424 . . . . . . . . . . 11  |-  ( 0R 
+R  ( -1R  .R  ( 1R  .R  0R ) ) )  =  0R
3018, 29syl6eq 2452 . . . . . . . . . 10  |-  ( w  e.  R.  ->  (
( 0R  .R  w
)  +R  ( -1R 
.R  ( 1R  .R  0R ) ) )  =  0R )
31 mulcomsr 8920 . . . . . . . . . . . . 13  |-  ( 1R 
.R  w )  =  ( w  .R  1R )
32 1idsr 8929 . . . . . . . . . . . . 13  |-  ( w  e.  R.  ->  (
w  .R  1R )  =  w )
3331, 32syl5eq 2448 . . . . . . . . . . . 12  |-  ( w  e.  R.  ->  ( 1R  .R  w )  =  w )
3433oveq1d 6055 . . . . . . . . . . 11  |-  ( w  e.  R.  ->  (
( 1R  .R  w
)  +R  ( 0R 
.R  0R ) )  =  ( w  +R  ( 0R  .R  0R ) ) )
35 00sr 8930 . . . . . . . . . . . . . 14  |-  ( 0R  e.  R.  ->  ( 0R  .R  0R )  =  0R )
3610, 35ax-mp 8 . . . . . . . . . . . . 13  |-  ( 0R 
.R  0R )  =  0R
3736oveq2i 6051 . . . . . . . . . . . 12  |-  ( w  +R  ( 0R  .R  0R ) )  =  ( w  +R  0R )
38 0idsr 8928 . . . . . . . . . . . 12  |-  ( w  e.  R.  ->  (
w  +R  0R )  =  w )
3937, 38syl5eq 2448 . . . . . . . . . . 11  |-  ( w  e.  R.  ->  (
w  +R  ( 0R 
.R  0R ) )  =  w )
4034, 39eqtrd 2436 . . . . . . . . . 10  |-  ( w  e.  R.  ->  (
( 1R  .R  w
)  +R  ( 0R 
.R  0R ) )  =  w )
4130, 40opeq12d 3952 . . . . . . . . 9  |-  ( w  e.  R.  ->  <. (
( 0R  .R  w
)  +R  ( -1R 
.R  ( 1R  .R  0R ) ) ) ,  ( ( 1R  .R  w )  +R  ( 0R  .R  0R ) )
>.  =  <. 0R ,  w >. )
4214, 41eqtrd 2436 . . . . . . . 8  |-  ( w  e.  R.  ->  ( <. 0R ,  1R >.  x. 
<. w ,  0R >. )  =  <. 0R ,  w >. )
439, 42syl5eq 2448 . . . . . . 7  |-  ( w  e.  R.  ->  (
_i  x.  <. w ,  0R >. )  =  <. 0R ,  w >. )
4443oveq2d 6056 . . . . . 6  |-  ( w  e.  R.  ->  ( <. z ,  0R >.  +  ( _i  x.  <. w ,  0R >. )
)  =  ( <.
z ,  0R >.  + 
<. 0R ,  w >. ) )
4544adantl 453 . . . . 5  |-  ( ( z  e.  R.  /\  w  e.  R. )  ->  ( <. z ,  0R >.  +  ( _i  x.  <. w ,  0R >. ) )  =  ( <.
z ,  0R >.  + 
<. 0R ,  w >. ) )
46 addcnsr 8966 . . . . . . 7  |-  ( ( ( z  e.  R.  /\  0R  e.  R. )  /\  ( 0R  e.  R.  /\  w  e.  R. )
)  ->  ( <. z ,  0R >.  +  <. 0R ,  w >. )  =  <. ( z  +R  0R ) ,  ( 0R  +R  w )
>. )
4710, 46mpanl2 663 . . . . . 6  |-  ( ( z  e.  R.  /\  ( 0R  e.  R.  /\  w  e.  R. )
)  ->  ( <. z ,  0R >.  +  <. 0R ,  w >. )  =  <. ( z  +R  0R ) ,  ( 0R  +R  w )
>. )
4810, 47mpanr1 665 . . . . 5  |-  ( ( z  e.  R.  /\  w  e.  R. )  ->  ( <. z ,  0R >.  +  <. 0R ,  w >. )  =  <. (
z  +R  0R ) ,  ( 0R  +R  w ) >. )
49 0idsr 8928 . . . . . 6  |-  ( z  e.  R.  ->  (
z  +R  0R )  =  z )
50 addcomsr 8918 . . . . . . 7  |-  ( 0R 
+R  w )  =  ( w  +R  0R )
5150, 38syl5eq 2448 . . . . . 6  |-  ( w  e.  R.  ->  ( 0R  +R  w )  =  w )
52 opeq12 3946 . . . . . 6  |-  ( ( ( z  +R  0R )  =  z  /\  ( 0R  +R  w
)  =  w )  ->  <. ( z  +R  0R ) ,  ( 0R  +R  w )
>.  =  <. z ,  w >. )
5349, 51, 52syl2an 464 . . . . 5  |-  ( ( z  e.  R.  /\  w  e.  R. )  -> 
<. ( z  +R  0R ) ,  ( 0R  +R  w ) >.  =  <. z ,  w >. )
5445, 48, 533eqtrrd 2441 . . . 4  |-  ( ( z  e.  R.  /\  w  e.  R. )  -> 
<. z ,  w >.  =  ( <. z ,  0R >.  +  ( _i  x.  <. w ,  0R >. ) ) )
55 opex 4387 . . . . 5  |-  <. z ,  0R >.  e.  _V
56 opex 4387 . . . . 5  |-  <. w ,  0R >.  e.  _V
57 eleq1 2464 . . . . . . 7  |-  ( x  =  <. z ,  0R >.  ->  ( x  e.  RR  <->  <. z ,  0R >.  e.  RR ) )
58 eleq1 2464 . . . . . . 7  |-  ( y  =  <. w ,  0R >.  ->  ( y  e.  RR  <->  <. w ,  0R >.  e.  RR ) )
5957, 58bi2anan9 844 . . . . . 6  |-  ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  ->  ( (
x  e.  RR  /\  y  e.  RR )  <->  (
<. z ,  0R >.  e.  RR  /\  <. w ,  0R >.  e.  RR ) ) )
60 oveq1 6047 . . . . . . . 8  |-  ( x  =  <. z ,  0R >.  ->  ( x  +  ( _i  x.  y
) )  =  (
<. z ,  0R >.  +  ( _i  x.  y
) ) )
61 oveq2 6048 . . . . . . . . 9  |-  ( y  =  <. w ,  0R >.  ->  ( _i  x.  y )  =  ( _i  x.  <. w ,  0R >. ) )
6261oveq2d 6056 . . . . . . . 8  |-  ( y  =  <. w ,  0R >.  ->  ( <. z ,  0R >.  +  (
_i  x.  y )
)  =  ( <.
z ,  0R >.  +  ( _i  x.  <. w ,  0R >. )
) )
6360, 62sylan9eq 2456 . . . . . . 7  |-  ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  ->  ( x  +  ( _i  x.  y ) )  =  ( <. z ,  0R >.  +  ( _i  x.  <. w ,  0R >. ) ) )
6463eqeq2d 2415 . . . . . 6  |-  ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  ->  ( <. z ,  w >.  =  ( x  +  ( _i  x.  y ) )  <->  <. z ,  w >.  =  ( <. z ,  0R >.  +  ( _i  x.  <. w ,  0R >. ) ) ) )
6559, 64anbi12d 692 . . . . 5  |-  ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  ->  ( (
( x  e.  RR  /\  y  e.  RR )  /\  <. z ,  w >.  =  ( x  +  ( _i  x.  y
) ) )  <->  ( ( <. z ,  0R >.  e.  RR  /\  <. w ,  0R >.  e.  RR )  /\  <. z ,  w >.  =  ( <. z ,  0R >.  +  (
_i  x.  <. w ,  0R >. ) ) ) ) )
6655, 56, 65spc2ev 3004 . . . 4  |-  ( ( ( <. z ,  0R >.  e.  RR  /\  <. w ,  0R >.  e.  RR )  /\  <. z ,  w >.  =  ( <. z ,  0R >.  +  (
_i  x.  <. w ,  0R >. ) ) )  ->  E. x E. y
( ( x  e.  RR  /\  y  e.  RR )  /\  <. z ,  w >.  =  ( x  +  ( _i  x.  y ) ) ) )
677, 54, 66syl2anc 643 . . 3  |-  ( ( z  e.  R.  /\  w  e.  R. )  ->  E. x E. y
( ( x  e.  RR  /\  y  e.  RR )  /\  <. z ,  w >.  =  ( x  +  ( _i  x.  y ) ) ) )
68 r2ex 2704 . . 3  |-  ( E. x  e.  RR  E. y  e.  RR  <. z ,  w >.  =  (
x  +  ( _i  x.  y ) )  <->  E. x E. y ( ( x  e.  RR  /\  y  e.  RR )  /\  <. z ,  w >.  =  ( x  +  ( _i  x.  y
) ) ) )
6967, 68sylibr 204 . 2  |-  ( ( z  e.  R.  /\  w  e.  R. )  ->  E. x  e.  RR  E. y  e.  RR  <. z ,  w >.  =  ( x  +  ( _i  x.  y ) ) )
701, 3, 69optocl 4911 1  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1721   E.wrex 2667   <.cop 3777  (class class class)co 6040   R.cnr 8698   0Rc0r 8699   1Rc1r 8700   -1Rcm1r 8701    +R cplr 8702    .R cmr 8703   CCcc 8944   RRcr 8945   _ici 8948    + caddc 8949    x. cmul 8951
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-omul 6688  df-er 6864  df-ec 6866  df-qs 6870  df-ni 8705  df-pli 8706  df-mi 8707  df-lti 8708  df-plpq 8741  df-mpq 8742  df-ltpq 8743  df-enq 8744  df-nq 8745  df-erq 8746  df-plq 8747  df-mq 8748  df-1nq 8749  df-rq 8750  df-ltnq 8751  df-np 8814  df-1p 8815  df-plp 8816  df-mp 8817  df-ltp 8818  df-plpr 8888  df-mpr 8889  df-enr 8890  df-nr 8891  df-plr 8892  df-mr 8893  df-0r 8895  df-1r 8896  df-m1r 8897  df-c 8952  df-i 8955  df-r 8956  df-add 8957  df-mul 8958
  Copyright terms: Public domain W3C validator