MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcc4dom Structured version   Unicode version

Theorem axcc4dom 8812
Description: Relax the constraint on axcc4 8810 to dominance instead of equinumerosity. (Contributed by Mario Carneiro, 18-Jan-2014.)
Hypotheses
Ref Expression
axcc4dom.1  |-  A  e. 
_V
axcc4dom.2  |-  ( x  =  ( f `  n )  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
axcc4dom  |-  ( ( N  ~<_  om  /\  A. n  e.  N  E. x  e.  A  ph )  ->  E. f ( f : N --> A  /\  A. n  e.  N  ps ) )
Distinct variable groups:    A, f, n, x    f, N, n    ph, f    ps, x
Allowed substitution hints:    ph( x, n)    ps( f, n)    N( x)

Proof of Theorem axcc4dom
StepHypRef Expression
1 brdom2 7537 . . 3  |-  ( N  ~<_  om  <->  ( N  ~<  om  \/  N  ~~  om ) )
2 isfinite 8060 . . . . 5  |-  ( N  e.  Fin  <->  N  ~<  om )
3 axcc4dom.2 . . . . . . 7  |-  ( x  =  ( f `  n )  ->  ( ph 
<->  ps ) )
43ac6sfi 7755 . . . . . 6  |-  ( ( N  e.  Fin  /\  A. n  e.  N  E. x  e.  A  ph )  ->  E. f ( f : N --> A  /\  A. n  e.  N  ps ) )
54ex 434 . . . . 5  |-  ( N  e.  Fin  ->  ( A. n  e.  N  E. x  e.  A  ph 
->  E. f ( f : N --> A  /\  A. n  e.  N  ps ) ) )
62, 5sylbir 213 . . . 4  |-  ( N 
~<  om  ->  ( A. n  e.  N  E. x  e.  A  ph  ->  E. f ( f : N --> A  /\  A. n  e.  N  ps ) ) )
7 raleq 3053 . . . . . 6  |-  ( N  =  if ( N 
~~  om ,  N ,  om )  ->  ( A. n  e.  N  E. x  e.  A  ph  <->  A. n  e.  if  ( N  ~~  om ,  N ,  om ) E. x  e.  A  ph ) )
8 feq2 5707 . . . . . . . 8  |-  ( N  =  if ( N 
~~  om ,  N ,  om )  ->  ( f : N --> A  <->  f : if ( N  ~~  om ,  N ,  om ) --> A ) )
9 raleq 3053 . . . . . . . 8  |-  ( N  =  if ( N 
~~  om ,  N ,  om )  ->  ( A. n  e.  N  ps  <->  A. n  e.  if  ( N  ~~  om ,  N ,  om ) ps )
)
108, 9anbi12d 710 . . . . . . 7  |-  ( N  =  if ( N 
~~  om ,  N ,  om )  ->  ( ( f : N --> A  /\  A. n  e.  N  ps ) 
<->  ( f : if ( N  ~~  om ,  N ,  om ) --> A  /\  A. n  e.  if  ( N  ~~  om ,  N ,  om ) ps ) ) )
1110exbidv 1685 . . . . . 6  |-  ( N  =  if ( N 
~~  om ,  N ,  om )  ->  ( E. f ( f : N --> A  /\  A. n  e.  N  ps ) 
<->  E. f ( f : if ( N 
~~  om ,  N ,  om ) --> A  /\  A. n  e.  if  ( N  ~~  om ,  N ,  om ) ps )
) )
127, 11imbi12d 320 . . . . 5  |-  ( N  =  if ( N 
~~  om ,  N ,  om )  ->  ( ( A. n  e.  N  E. x  e.  A  ph 
->  E. f ( f : N --> A  /\  A. n  e.  N  ps ) )  <->  ( A. n  e.  if  ( N  ~~  om ,  N ,  om ) E. x  e.  A  ph  ->  E. f
( f : if ( N  ~~  om ,  N ,  om ) --> A  /\  A. n  e.  if  ( N  ~~  om ,  N ,  om ) ps ) ) ) )
13 axcc4dom.1 . . . . . 6  |-  A  e. 
_V
14 breq1 4445 . . . . . . 7  |-  ( N  =  if ( N 
~~  om ,  N ,  om )  ->  ( N 
~~  om  <->  if ( N  ~~  om ,  N ,  om )  ~~  om ) )
15 breq1 4445 . . . . . . 7  |-  ( om  =  if ( N 
~~  om ,  N ,  om )  ->  ( om 
~~  om  <->  if ( N  ~~  om ,  N ,  om )  ~~  om ) )
16 omex 8051 . . . . . . . 8  |-  om  e.  _V
1716enref 7540 . . . . . . 7  |-  om  ~~  om
1814, 15, 17elimhyp 3993 . . . . . 6  |-  if ( N  ~~  om ,  N ,  om )  ~~  om
1913, 18, 3axcc4 8810 . . . . 5  |-  ( A. n  e.  if  ( N  ~~  om ,  N ,  om ) E. x  e.  A  ph  ->  E. f
( f : if ( N  ~~  om ,  N ,  om ) --> A  /\  A. n  e.  if  ( N  ~~  om ,  N ,  om ) ps ) )
2012, 19dedth 3986 . . . 4  |-  ( N 
~~  om  ->  ( A. n  e.  N  E. x  e.  A  ph  ->  E. f ( f : N --> A  /\  A. n  e.  N  ps ) ) )
216, 20jaoi 379 . . 3  |-  ( ( N  ~<  om  \/  N  ~~  om )  ->  ( A. n  e.  N  E. x  e.  A  ph 
->  E. f ( f : N --> A  /\  A. n  e.  N  ps ) ) )
221, 21sylbi 195 . 2  |-  ( N  ~<_  om  ->  ( A. n  e.  N  E. x  e.  A  ph  ->  E. f ( f : N --> A  /\  A. n  e.  N  ps ) ) )
2322imp 429 1  |-  ( ( N  ~<_  om  /\  A. n  e.  N  E. x  e.  A  ph )  ->  E. f ( f : N --> A  /\  A. n  e.  N  ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1374   E.wex 1591    e. wcel 1762   A.wral 2809   E.wrex 2810   _Vcvv 3108   ifcif 3934   class class class wbr 4442   -->wf 5577   ` cfv 5581   omcom 6673    ~~ cen 7505    ~<_ cdom 7506    ~< csdm 7507   Fincfn 7508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-inf2 8049  ax-cc 8806
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-reu 2816  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-int 4278  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-om 6674  df-2nd 6777  df-recs 7034  df-rdg 7068  df-1o 7122  df-er 7303  df-en 7509  df-dom 7510  df-sdom 7511  df-fin 7512
This theorem is referenced by:  2ndcctbss  19717  2ndcsep  19721  iscmet3  21462  heiborlem3  29901
  Copyright terms: Public domain W3C validator