MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcc4dom Structured version   Unicode version

Theorem axcc4dom 8852
Description: Relax the constraint on axcc4 8850 to dominance instead of equinumerosity. (Contributed by Mario Carneiro, 18-Jan-2014.)
Hypotheses
Ref Expression
axcc4dom.1  |-  A  e. 
_V
axcc4dom.2  |-  ( x  =  ( f `  n )  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
axcc4dom  |-  ( ( N  ~<_  om  /\  A. n  e.  N  E. x  e.  A  ph )  ->  E. f ( f : N --> A  /\  A. n  e.  N  ps ) )
Distinct variable groups:    A, f, n, x    f, N, n    ph, f    ps, x
Allowed substitution hints:    ph( x, n)    ps( f, n)    N( x)

Proof of Theorem axcc4dom
StepHypRef Expression
1 brdom2 7582 . . 3  |-  ( N  ~<_  om  <->  ( N  ~<  om  \/  N  ~~  om ) )
2 isfinite 8101 . . . . 5  |-  ( N  e.  Fin  <->  N  ~<  om )
3 axcc4dom.2 . . . . . . 7  |-  ( x  =  ( f `  n )  ->  ( ph 
<->  ps ) )
43ac6sfi 7797 . . . . . 6  |-  ( ( N  e.  Fin  /\  A. n  e.  N  E. x  e.  A  ph )  ->  E. f ( f : N --> A  /\  A. n  e.  N  ps ) )
54ex 432 . . . . 5  |-  ( N  e.  Fin  ->  ( A. n  e.  N  E. x  e.  A  ph 
->  E. f ( f : N --> A  /\  A. n  e.  N  ps ) ) )
62, 5sylbir 213 . . . 4  |-  ( N 
~<  om  ->  ( A. n  e.  N  E. x  e.  A  ph  ->  E. f ( f : N --> A  /\  A. n  e.  N  ps ) ) )
7 raleq 3003 . . . . . 6  |-  ( N  =  if ( N 
~~  om ,  N ,  om )  ->  ( A. n  e.  N  E. x  e.  A  ph  <->  A. n  e.  if  ( N  ~~  om ,  N ,  om ) E. x  e.  A  ph ) )
8 feq2 5696 . . . . . . . 8  |-  ( N  =  if ( N 
~~  om ,  N ,  om )  ->  ( f : N --> A  <->  f : if ( N  ~~  om ,  N ,  om ) --> A ) )
9 raleq 3003 . . . . . . . 8  |-  ( N  =  if ( N 
~~  om ,  N ,  om )  ->  ( A. n  e.  N  ps  <->  A. n  e.  if  ( N  ~~  om ,  N ,  om ) ps )
)
108, 9anbi12d 709 . . . . . . 7  |-  ( N  =  if ( N 
~~  om ,  N ,  om )  ->  ( ( f : N --> A  /\  A. n  e.  N  ps ) 
<->  ( f : if ( N  ~~  om ,  N ,  om ) --> A  /\  A. n  e.  if  ( N  ~~  om ,  N ,  om ) ps ) ) )
1110exbidv 1735 . . . . . 6  |-  ( N  =  if ( N 
~~  om ,  N ,  om )  ->  ( E. f ( f : N --> A  /\  A. n  e.  N  ps ) 
<->  E. f ( f : if ( N 
~~  om ,  N ,  om ) --> A  /\  A. n  e.  if  ( N  ~~  om ,  N ,  om ) ps )
) )
127, 11imbi12d 318 . . . . 5  |-  ( N  =  if ( N 
~~  om ,  N ,  om )  ->  ( ( A. n  e.  N  E. x  e.  A  ph 
->  E. f ( f : N --> A  /\  A. n  e.  N  ps ) )  <->  ( A. n  e.  if  ( N  ~~  om ,  N ,  om ) E. x  e.  A  ph  ->  E. f
( f : if ( N  ~~  om ,  N ,  om ) --> A  /\  A. n  e.  if  ( N  ~~  om ,  N ,  om ) ps ) ) ) )
13 axcc4dom.1 . . . . . 6  |-  A  e. 
_V
14 breq1 4397 . . . . . . 7  |-  ( N  =  if ( N 
~~  om ,  N ,  om )  ->  ( N 
~~  om  <->  if ( N  ~~  om ,  N ,  om )  ~~  om ) )
15 breq1 4397 . . . . . . 7  |-  ( om  =  if ( N 
~~  om ,  N ,  om )  ->  ( om 
~~  om  <->  if ( N  ~~  om ,  N ,  om )  ~~  om ) )
16 omex 8092 . . . . . . . 8  |-  om  e.  _V
1716enref 7585 . . . . . . 7  |-  om  ~~  om
1814, 15, 17elimhyp 3942 . . . . . 6  |-  if ( N  ~~  om ,  N ,  om )  ~~  om
1913, 18, 3axcc4 8850 . . . . 5  |-  ( A. n  e.  if  ( N  ~~  om ,  N ,  om ) E. x  e.  A  ph  ->  E. f
( f : if ( N  ~~  om ,  N ,  om ) --> A  /\  A. n  e.  if  ( N  ~~  om ,  N ,  om ) ps ) )
2012, 19dedth 3935 . . . 4  |-  ( N 
~~  om  ->  ( A. n  e.  N  E. x  e.  A  ph  ->  E. f ( f : N --> A  /\  A. n  e.  N  ps ) ) )
216, 20jaoi 377 . . 3  |-  ( ( N  ~<  om  \/  N  ~~  om )  ->  ( A. n  e.  N  E. x  e.  A  ph 
->  E. f ( f : N --> A  /\  A. n  e.  N  ps ) ) )
221, 21sylbi 195 . 2  |-  ( N  ~<_  om  ->  ( A. n  e.  N  E. x  e.  A  ph  ->  E. f ( f : N --> A  /\  A. n  e.  N  ps ) ) )
2322imp 427 1  |-  ( ( N  ~<_  om  /\  A. n  e.  N  E. x  e.  A  ph )  ->  E. f ( f : N --> A  /\  A. n  e.  N  ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    = wceq 1405   E.wex 1633    e. wcel 1842   A.wral 2753   E.wrex 2754   _Vcvv 3058   ifcif 3884   class class class wbr 4394   -->wf 5564   ` cfv 5568   omcom 6682    ~~ cen 7550    ~<_ cdom 7551    ~< csdm 7552   Fincfn 7553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-inf2 8090  ax-cc 8846
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-reu 2760  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-om 6683  df-2nd 6784  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-1o 7166  df-er 7347  df-en 7554  df-dom 7555  df-sdom 7556  df-fin 7557
This theorem is referenced by:  2ndcctbss  20246  2ndcsep  20250  iscmet3  22022  heiborlem3  31571
  Copyright terms: Public domain W3C validator